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Introduction

e |n social network analysis, we draw on three
major areas of mathematics regularly:

— Binary Relations / Set Theory

e Branch of math that deals with mappings between sets, such
as objects to real numbers (measurement) or people to
people (social relations)

— Graph Theory

* Branch of discrete math that deals with collections of ties
among nodes and gives us concepts like paths

— Matrix Algebra
* Tables of numbers

e Operations on matrices enable us to draw conclusions we
couldn’t just intuit



BINARY RELATIONS / SET THEORY



Cartesian Product

e Given two sets, S1 and S2, the Cartesian
product S1xS2 is the set of all possible
ordered pairs (u,v) in which ueS1 and veS2

e Example:

—S1={a,b,c}
— 52 ={xy}
— 51xS2 = { (a,x),(a,y),(b,x),(b,y),(c,x),(c,y) }



Binary Relations

e Given sets S1 and S2, a binary relation R is a
subset of their Cartesian product

Note: S1 and
Y S2 could be
the same set

S2

Binary Relation

* R={(a,x), (a,y), (b,y), (c,z) }



Relational Terminology

e To indicate that “u is R-related tov” or “u is
mapped to v by the relation R”, we write

—(u,v) ER, or
— URvV
e Example: If Ris “likes”, then
— URv says u likes v
— (jim,jane) € R says jim likes jane



Properties of Relations

A relation is reflexive if for all u, (u,u)eR

— E.g., suppose R is “is in the same room as”

— uis always in the same room as u, so the relation is reflexive
A relation is symmetric if for all u and v, uRv implies vRu

— If uis in the same room as v, then it always true that v is in the same
room as u. So the relation is symmetric

A relation is transitive if for all u,v,w, uRv together with vRw implies
uRw

— Ifuisin the same roomasv, and vis in the same room as u, then u is
necessarily in the same room as w

— So the relation is transitive
A relation is an equivalence if it is reflexive, symmetric and
transitive

— Equivalence relations give rise to partitions and vice-versa

— A partition of a set S is an exhaustive set of mutually exclusive classes
such at each member of S belongs to one and only one class



Partitions of Sets

To partition a set is to cut it up into pieces, such that
every member of the set falls into one (and only one)
of the pieces.

— Exhaustive and mutually exclusive

The pieces are called classes or colors or blocks of the
partition

Given a partition P, the class of any item u is denoted
by p(u)

We can define a relation E such that ukv iff p(u) = p(v)

— i.e., uand v are equivalent if they belong to the same class
in the partition



Equivalence Relations and Partitions

e Given a partition, the relation “is in the same
block as” forms an equivalence relation

— Reflexivity: an item is always in the same block as
itself

— Symmetry: if uis in the same block as v, then v is
in the same block as u.

— Transitivity: if u is in the same block as v, and w is
in the same block as v, then u must be in the same
block as w.



Operations

e The converse or inverse of a relation R is denoted
R
— For all uandyv, (u,v)eR?tif and only if (v,u)eR
— The converse effectively reverses the direction of the
mapping
e Example

— If R is represents “gives advice to”, then uRv means u
gives advice to v, and uRlv indicates that v gives
advice tou

e |fRis symmetric, then R =R

Important note: In the world of matrices, the term “inverse” and the superscript -*
refer to a very different concept: a false cognate. The relational inverse or converse
corresponds to the matrix concept of a transpose, denoted X’ or X', and not to the
matrix inverse, denoted X1.



Relational Composition

If F and E are binary relations, then their composition F°E
is a new relation such that (u,v) eF°E if there exists w
such that (u,w)eF and (w,v) eE.

— i.e., uis F°E-related to v if there exists an intermediary w
such that u is F-related to w and w is E-related to v

Example:

— Suppose F and E are friend of and enemy of, respectively
— u F°E v means that u has a friend who is the enemy of v
Easier to decode by saying it backwards:

— What is vto u? vis the enemy of a friend of u



More Relational Composition

Assume F is “likes” and E is “dislikes”

e uF°Fv (or(u,v) € F°F) means u likes someone who
likes v
— vis liked by someone who is liked by u
— Loosely, vis a friend of a friend of u

e (u,v) € E°E (or u E°E v ) means u dislikes someone who
dislikes v

— vis disliked by someone who is disliked by u
— Loosely, v is an enemy of an enemy
e uE°Fv means u dislikes someone who likes v
— Vis liked by someone who is disliked by u
— Loosely, v is friend of an enemy of u

e Compositions are new kinds of relations, like uncle is
brother of a parent
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More Relational Composition

e Given these relations

— A (authored). Relates persons = documents
— P (published in). Relates docs = journals
— K (has keyword). Relates docs = keywords
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A (authored). persons 2 documents

CompOSitionS — CO nt. P (published in). docs = journals

K (has keyword). docs = keywords

if (i,j)€AA, then i authors a document that is authored by j. In

-1
AR short, i and j are coauthors
iAPj = Person i authored a document that is published in journal j.
AP So i has published in journal j
AK iAKj = Person i authored a doc that has keyword j. So, i writes

about topic j

person i authored a document that has a keyword that is in a
AKKA1 | document that was authored by j. In other words, i and j write
about the same topics

person i authored a document that has a keyword that is in a
AKK1AIAP | document that was authored by someone who has published in
journalj. l.e., i has written about a topic that has appeared in
journal j




Relational Equations

* F=F°F means that uFv if and only if uF°Fv
— Friends of friends are friends, and vice versa

 F=E°E means that uFv if and only if UE°Ev
— Enemies of enemies are friends, and vice-versa

e E=F°E=E°F means that ukv if and only if uF°Ev
and uE°Fv

— In short, friends of enemies are enemies, and so
are enemies of friends

Using relational equations, we can formally write down the expectations of balance theory



MATRIX ALGEBRA



Matrix Algebra

* |n this section, we will cover:
— Matrix Concepts, Notation & Terminologies
— Adjacency Matrices
— Transposes
— Aggregations & Vectors
— Matrix Operations
— Boolean Algebra (and relational composition)



Matrices

e Symbolized by a capital letter, like A

e Each cell in the matrix identified by row and
column subscripts: a;
— First subscript is row, second is column

Age Gender Income

Mary | 32 1 90,000

Bill | 50 2| 45,000 a;p; =1
John | 12 2 0 a,; = 8000
Larry | 20 2| 8,000




Vectors

e Fach row and each column in a matrix is a
vector

— Vertical vectors are column vectors, horizontal are
row vectors

 Denoted by lowercase bold letter: y
* Each cell in the vector identified by subscript x.

X Yy z
Mary | 32 1 90,000

y;=2.1 Bil |50| 2 |45,000

z, =45,000 John 12| 2.1 0
Larry | 20 2 8,000




Ways and Modes

 Ways are the dimensions of a matrix.

e Modes are the sets of entities indexed by the
ways of a matrix

Event Event Event Event
1 2 3 4

EVELYN 1 1 1 1
LAURA 1 1 1 0

THERESA 0 1 1 1 Mary Bill John Larry
BRENDA 1 0 1 1 Mary | O 1 0 1
CHARLO 0 0 1 1 Bill 1 0 0 1
FRANCES | O 0 1 0 John | O 1 0 0
ELEANOR 0 0 0 0 Larry 1 0 1 0
PEARL 0 0 0 0 2-way, 1-mode
RUTH 0 0 0 0

VERNE 0 0 0 0

MYRNA 0 0 0 0

2-way, 2-mode



2-Way, 2-Mode data

Event Event Event Event BigSpersonaIity traits
1 2 3 4
EVELYN 1 1 1 1 ID T1 T2 T3 T4 T5
LAURA 1 1 1 0 1 0 6 6 2 0
THERESA | 0 1 1 1 2 |10 3 3 1 0
BRENDA | 1 0 1 1 3 (2 0O O 3 O
CHARLO | 0 0 1 1 4 |6 4 4 7 4
FRANCES | 0 | o0 | 1 | o > |3 3 3 3 3
ELEANOR | 0 0 0 0
PEARL 0 0 0 0 ,
RUTH 0 0 0 0 Profile data
VERNE 0 0 0 0
MYRNA 0 0 0 0

Affiliations



Profiles

e Typically, we use profiles to refer
to the patterns of responses
across a row of a matrix, generally
a 2-mode matrix.

e We might then compare profiles
across the rows to see which rows
have the most similar or dissimilar

profiles.

— We can also conceive of this

down the columns, as well.

In fact, when we correlate

variables in traditional OLS,

we are actually comparing the

profiles of each pair of variables
across the respondents.

ID A B C D E
1 0 6 6 2 0
2 O 3 3 1 0
3 2 0 0 3 0
4 6 4 4 7 4
5 3 3 3 3 3
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2-Way, 1-Mode data

Mary Bill John Larry

Mary 0 1 0 1

Network Adjacency matrix Bill 1 0 0 1
Friends John 0 1 0 0

Larry 1 0 1 0

1 BOSTON O 206 429 1504 963 2976 3095 2979 1949
2 NY 206 O 233 1308 802 2815 2934 2786 1771
3 DC 429 233 O 1075 671 2684 2799 2631 1616
4 MIAMI 1504 1308 1075 0 1329 3273 3053 2687 2037
5 CHICAGO 963 802 671 1329 0 2013 2142 2054 996
6 SEATTLE 2976 2815 2684 3273 2013 O 808 1131 1307
7 SF 3095 2934 2799 3053 2142 808 0O 379 1235
8 LA 2979 2786 2631 2687 2054 1131 379 O 1059
9 DENVER 1949 1771 1616 2037 996 1307 1235 1059 0]

Physical Proximity Matrix — Driving distance between cities



Adjacency Matrices

e Typically, the term adjacency matrix refers to a
matrix which captures the presence or
absence of a particular relationship among a
set of nodes.

e As such, they generally:
— Are square matrices (1-mode, 2-way)
— Are dichotomous (contain only 1s and 0s)



Proximity Matrices

Proximity Matrices record “degree of proximity”.

Proximities are usually among a single set of actor (hence, they are 1-
mode), but they are not limited to 1s and Os in the data.

What constitutes the proximity is user-defined.

— Driving distances are one form of proximities, other forms might be
number of friends in common, time spent together, number of emails
exchanged, or a measure of similarity in cognitive structures.

Proximity matrices can contain either similarity or distance (or dissimilarity)
data.

— Similarity data, such as number of friends in common or correlations,
means a larger number represents more similarity or greater proximity

— Distance (or dissimilarity data) such as physical distance means a larger
number represents more dissimilarity or less proximity



3-way data

Events

0

0|0
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Person

3-way, 1-mode
Krackhardt-style perceptions
by each person of relations

3-way, 2-mode
Longitudinal affiliations data

among all pairs of persons



Aggregations and Operations

e Unary (Intra-Matrix) Operations
— Row sums/marginals
— Column sums/marginals
— Matrix Sums
— Transpose
— Normalizations
— Dichotomization
— Symmetrizing
e Cellwise Binary (Inter-Matrix) Operations
— Sum
— Cellwise multiplication
— Boolean Operations
e Special Binary (Inter-Matrix) Operations
— Cross Product (Matrix Multiplication)



e Row sums
ri:ZXij
,-
e Column sums

C, :inj

. |
e Matrix sums

m = inj
]

Summations

Mary
Bill
John
Larry

Column
Marginals

Mary Bill John Larry

Row
Marginals

3

2
1
0

O 1| 1 1
1 |0 1 0
O 0] O 1
O 0] O 0
1 1 2 2




Normalizing

 Converting to proportions

N X
— Rows X, =3
J
f
* X|
X, =—
— Columns i
j
Row
Mary Bill John Larry  Sums
Mary 0 1] 1 1 3
Bill 1 0O 1 0 2
John O 0| O 1 1
Larry O 0] O 0 0
Column
Marginals 1 1 2 2 6

Mary
Bill
John
Larry

Column
Marginals

where r, gives the sum of row i

Row

Mary Bill John Larry  sums
0 |.33] .33 | .33 1
S5 0] .5 0 1
O 0,0 1 1
.5 .33 .83 1.33 3




Normalizing

Converting to z-scores (standardizing)

— Columns . X — U |
X, — —1 ] where u; gives the mean of
& O . column j, and o; is the std
J deviation of column j
Varl Var2 Var3 Var4 Varl Var2 Var3 Var4
Mary 3 20 25 10 Mary 1.34 | -0.38 | 1.34 | -0.38
Bill 1 55 15 45 Bill -0.45| 144 | -045 | 1.44
John 0 32 10 22 John -1.34 | 0.25 | -1.34 | 0.25
Larry 2 2 20 -8 Larry 0.45 | -1.31| 045 | -1.31
Mean 1.5 27.3 | 175 | 17.3 Mean 0.00 | 0.00 | 0.00 | 0.00
Std Dev 1.1 19.3 5.6 19.3 Std Dev 1.00 | 1.00 | 1.00 | 1.00




Transposes

e The transpose of a matrix is the matrix flipped on its
side.

— The rows become columns and the columns become rows
— So the transpose of an m by n matrix is an n by m matrix.

e Here is the matrix presented on the last side, and its
transpose

— The transpose of matrix M is indicated by M’ or M’

s e b e 1 2 3 4 5
. To 6 ¢ 5 o Alo o 2 & 3
2 o 3 3 1 0 B |6 3 0 4 3
3 |2 0 0 30 c|le6 3 o0 4 3
4 |6 4 4 7 4
E|0 O 0 4 3
Matrix M

Its transpose, M’



Transpose (Another Example)

M Tennis | Football | Rugby | Golf
 Given Matrix M, swap Mike 10 0 1 0
Ron 0 1 1 0
the rows and columns
to make Matrix M" P.at 0 . 0 -
Bill 1 1 1 1
Joe 0 0 0 0
Rich |0 1 1 1
Peg 1 1 0 1
MT Mike Ron Pat Bill Joe Rich Peg
Tennis |0 0 o) 1 0 0) 1
Football |0 1 0 1 0 1 1
Rugby |1 1 0 1 0 1 0
Golf 0 0 1 1 0 1 1




Dichotomizing

e Xis avalued matrix, say 1 to 10 rating of
strength of tie

e Construct a matrix Y of ones and zeros so that

—V;; = 1if x;; > 5, and y;; = 0 otherwise

X Y
EVE | LAU | THE | BRE | CHA EVE | LAU | THE | BRE | CHA
EVELYN 8| 6 | 7|6 3 EVELYN 1 1 11 0
LAURA 6 | 7| 6| 6 3 LAURA 1 1 11 0
THERESA 7|1 6 | 8| 6 4 THERESA 1 1 11 0
BRENDA 6 | 6 | 6| 7 4 BRENDA 1 1 1|1 0
CHARLOTTE | 3 | 3 | 4 | 4 | 4 CHARLOTTE | O | O | O | O 0

X.>5



Symmetrizing

* When matrix is not symmetric, i.e., x; # X;

* Symmetrize various ways. Set y;; and y;; to:

— I\/Iaximum(xij, X..) {union rulejj

ji
— Minimum (x;;, X;;) {intersection rulej

— Average: (x; + in)/2
— Lowerhalf: choose x; when i > j and x;; otherwise
— etc
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Symmetrizing Example

e X is non-symmetric (and happens to be
valued)

* Construct matrix Y such that y; (and y;) =
maximum of x; and x;

X

ROM BON AMB BER PET LOU ROM BON AMB BER PET LOU

ROMUL10| O | 1 | 1 |03/ O ROMUL 10| O | 1 | 1 |0 ]3] O
BONAVEN 5| 0 | 0 | 1 | 0| 3| 2 BONAVEN 5| 1 [ 0 | 1 | 1|3 | 2
AMBROSE 9| 0 | 1 | 0 [0 ] 0] O AMBROSE 9| 1 | 1 | 0 | 2|0 ]| O
BERTH6 | 0 | 1 | 2 | 0| 3]0 ‘ BERTH6 | 0 | 1 | 2 | 0| 3]0
PETER. 4 | 0 | 3 | 0 |1 |0 2 PETER 4 | 3 | 3 | 0 | 3|0 2
louls 11 | o | 2 | o0 |o|o|oO louls 11 | o | 2 | o0 |0 |2]|o0

Symmetrized by Maximum



Cellwise Binary Operators

e Sum (Addition)

C=A+ B where Cjj = aj; + bij

e Cellwise (Element) Multiplication

e Boolean operations



Matrix Multiplication

e Notation:

e Definition:

e Example:

Mary
Bill

John

Larry

Mary Bill John Larry

0

1

1

1

1
0
0

0
0
0

1
0
0

0
1
0

C=

Mary
Bill

John

Larry

AB
:E:fimkﬁq
k

Mary Bill John Larry

0

0

1

1

1
0
0

0
0
1

1
0
0

0
1
0

Note: matrix products are
not generally commutative.
i.e., AB does not usually

equal

Mary
Bill
John
Larry

BA

Mary Bill John Larry

1 1 1 1
0 0O 1 2
0 1| O 0
0 0| O 0
C=AB



Matrix Multiplication

B e C=ABorC=AxB
|: b bu_ — Only possible when the number of
b, Ib, . columnsin A is the same as the
_ 1 1= number of rows in B, as in A, and
Juk |2 O B
A==t — These are said to be conformable
: a T T>© — Produces .C,

= — e |tis calculated as:
clj = 2 alk * bkj for a" k

i I x3+0x24+2x1 1x140x142x0] |5 1
0 |l -1x343x24+1x1 —1x143x1+1x0[ |4 2



A Matrix Product Example

Skills | Math | Verbal | Analytic
Kev 1.00 |.75 .80
Jeff .80 .80 90
Lisa 75 .60 75
Kim .80 1.00 .85

Given a Skills and Items matrix
calculate the “affinity” that each
person has for each question

Kev for Question 1 is:
=1.00*.5+.75%*.1+.80* .40

=.5+.075+.32 =0.895

Lisa for Question 3 is:
=.75* 0+.60* 90+.75* .1

=.0+.54+.075=0.615

ltems

Q1

Q2

Q3

Q4

Math

.50

A3

Verbal

10

0

Analytic

40

25

Affin

01

Q2

03

Q4

Kev

0.895

0.95

0.755

0.815

Jeff

0.840

0.825

0.810

0.880

Lisa

0.735

0.75

0.615

0.735

Kim

0.840

0.813

0.985

0.860




Matrix Inverse and ldentity

 The inverse of a matrix X is a Matrix X1 such that XX1 =1,
where | is the identity matrix

* |nverse matrices can be very useful for solving matrix
equations that underlie some network algorithms

1| 0 | -2 7 | 2| 2 1| 0
4 | 1|0 28| 9 | -8 0| 1
1| 1 | 7 3 | 1| 1 0| 0
X X1 = |
Note:

o (XX1=XIX=1)
 Non square matrices do not have an inverse*



Boolean matrix multiplication

e Values can be 0 or 1 for all matrices
e Products are dichotomized

Would have beena 2in
regular matrix multiplication

Mary Bill John Larry Mary Bill John Larry Mary Bill John Larry
Mary] 0 | 1| O 1 Mary] 0 [0 | 1 1 Mary| 1 | 1| 1 0
Bill | 1 |0 1 0 Bill | 1 [0} 1 0 Bill| O |0 O 1
John| 0 [0] O 1 John| 0 |0| O 1 John| 0 |1] O 0
Larry] 0 |O0O| O 0 Larryl O | 1] O 0 Larry] 0 |O0| O 0

A B AB



Relational Composition

e If we represent binary relations as binary
adjacency matrices, boolean matrix products
correspond to relational composition

— F°E corresponds to FE

Mary
Bill
John
Larry

Likes

Mary Bill John Larry

0

1

0

1

1
0
0

0
0
0

1
0
0

0
1
0

F

Mary
Bill
John
Larry

Has conflicts with

Mary Bill John Larry

0

0

1

1

1
0
0

0
0
1

1
0
0

0
1
0

E

Likes someone who
has conflicts with

Mary Bill John Larry

Mary| 1 | 1| 1 0

Bill| O |0 O 1

John| 0 |1] O 0

Larry] 0 |O0| O 0
FE




Products of matrices & their transposes

e X'X = pre-multiplying X by its transpose
(X'X)ij — Zakibkj
e Computes sums of prgducts of each pair of
columns (cross-products)

 The basis for most similarity measures

Mary

Bill

—>

Ok | Ok |k
== ON
=N W
N (R |k O D

H W NP

John

o O |k |O |k
O O |O |+»r N
O O |k |k |W
O |k O |k |+

Larry




Products of matrices & their transposeg

e XX’ = product of matrix X by its transpose
(Xxl)ij = Zaikbjk
e Computes sums of pkroducts of each pair of
rows (cross-products)

e Similarities among rows

1 2 3 4 Mary Bill John Larry
Mary| O 1 |1 1 Mary| 3 1 1 0
Bill | 1 O|1] 0 ‘ Bill 1 2| 0 0
John| 0 0 |0 1 John| 1 0| 1 0
larry] 0O | O |O0O] O Larry| O |0 | O 0
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Multiplying a matrix by its transpose
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EV

0
0
0
0
0

E1
E2
E3
E4
E5
E6
E7
ES
E9
E10| 0

E11| O

E12| O

E13| O

E14| O

0O 0 O

0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1

0

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

111111011

111011110 0

6011111111

0

101111110 0

0010110100

0 000O11110 O
0 00 0O0O1O0T11
0 00010111
0 000 O0OO0OT1T11
0 0 0O0O0OOO0OTI1I1
0 000 O0OOOT11
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PEARL
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EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO

7
6
3
4
3

3

2
2
2

2

EVELYN
LAURA

THERESA
BRENDA

CHARLOTTE
FRANCES
ELEANOR
PEARL
RUTH

VERNE

MYRNA

KATHERINE

SYLVIA
NORA

HELEN

DOROTHY
OLIVIA

FLORA
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Graph Theoretic Concepts

* |n this section we will cover:

— Definitions — Reachability/Connectedness

— Terminology * Connectivity, flows

— Adjacency — lsolates, Pendants, Centers

— Density concepts — Components, bi-components
e E.g, Completeness — Walk Lengths, distance

— Walks, trails, paths * Geodesic distance

— Independent paths
— Cutpoints, bridges

— Cycles, Trees



Undirected Graphs

e An undirected graph G(V,E) (often referred to simply as a
graph) consists of ...

— Set of nodes|vertices V
representing actors

— Set of lines|links|edges E
representing ties among pairs of actors

* An edge is an unordered pair
of nodes (u,v)

 Nodes u and v adjacent if (u,v) € E
e So E is subset of set of all pairs of nodes

e Drawn without arrow heads
— Sometimes with dual arrow heads

e Used to represent logically symmetric social relations
— In communication with; attending same meeting as




Graphical representation of a graph

E1BILL

[HMICHAEL

LgHOLLY

GERY
CILEE T \l PAT
WSTEVE ‘ I JENNIE
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LIBRAZEY thRuUsS

[(FJOHN
EHPAULINE
}BERT N (TJANN

CAROL



Adjacency matrix of a graph

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18

HO BR CA PA PA JE PA AN MI

LE DO JO HA GE ST BE RU

BI

o 6 1 100 01 0 O1 01 0 O 0O

O 0 0o 0o o 0O OO 0O O1 0 0 0 01 1 O

HOLLY

1

2 BRAZEY

3

o 6 1 101 0O OO O O O OO O OTPO
101 0 01 11 0 O OOUOUOTUOTOUO0OTOO
101 0 01 1 0 O OO O OOTUOO0OO0OTUO
o 6 1 10 01 0 OO O O O OO O0OTPO
o 111001 0 O0O0O0O1 0 0 0 0 O
o 0 1 01100 O O O O OOOUOSPOQO

10 0 0 0O OO OO1T O0O1O0W11 00O

CAROL

PAM
PAT
6 JENNIE
7 PAULINE

ANN
9 MICHAEL

10
11
12
13
14
15
16
17
18

o 0 oo oo 0061 001 01 0 0 0O

BILL

o1 o0 0o oo o 0o OO OO O O O 1 1 0O

LEE
DON
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Directed vs. Undirected Ties

 Undirected relations
— Attended meeting with
— Communicates daily with
 Directed relations
— Lent money to

e Logically vs empirically directed ties

— Empirically, even un-
directed relations can Bob
be non-symmetric due to
measurement error

Bonnie

Biff

Betsy



Directed Graphs (Digraphs)

e Digraph G(V,E) consists of ... MG
— Set of nodes V \BD
— Set of directed arcs E
e Anarcis an ordered pair of
nodes (u,y) | =Y
e (u,v) € Eindicates u sends
arctov
e (u,v) € E does not imply that
(vu) € E <M

 Ties drawn with arrow heads, which can be in both
directions

e Represent logically non-symmetric or anti-symmetric
social relations

— Lends money to

JF



Graphical representation of a digraph

BILL

 DON

MICHAEL
Py HOLLY

PAT

‘ JENNIE
I

PAULINE " ANN

/

" CAROL




Adjacency matrix of a digraph

123456789

OCOO0OO0O0O OO0 OO OO O0OHA O AAAHA
OCd OO0 00000 O0O10000O0 A
Od 000000001000 A
eololojololololololololol Nok NoNoN
COO0O00O0O0O0OTdTHOHOH1H0O0OO0OOO
eolojojololololololololol jolololeN®)
O 00000 O0Hdd1010O0O10000
OO0 00000010000 HA-HAO0O
COO0OO0OO0CO0OO0O0O0OHOOOOOOOOo
COO0O000O0O0OHdTHOHOAH1H0OOO
COO0O 1010100000000 0O0O0
CO A1 00O A1 000 0100000
COO0O A A 1010000000000
T O A O A1 000 000000 0O0
T O AT O A 10000000000
COd O A0 100000000000
OCd OO0 000000100000 0O0
O 00-1000-1001H0O0O1000O0

>>o>Ad=FFWUWuzZ2ddulz2Z2>>WLE0
AL OCC=2Z2Z2Z21WLl JWHOIT x>0y
AINEOLQAZ=m]]{==l00 x>
O < < =Z Irm NM<<OFM
o O L D @) I 0p)
a D <L -
ol =
S ANMNMTWOON0O

10
11
12
13
14
15
16
17
18



Transpose Adjacency matrix

 Interchanging rows/columns of adjacency
matrix effectively reverses the direction of ties

Mary Bill John Larry Mary Bill John Larry
Mary| O 1 0 1 Mary| O 1, 0 1
Bill 1 10| 0 1 Bill 1 (0] 1 0
John| 0 |1] O 0 John| 0 |0 | O 1
Larry] 1 | 0| 1 0 Larry| 1 1, 0 0

Gives money to Gets money from

RIS BTN

|7 john arry . — john

larry




Valued Digraphs (Vigraphs)

A valued digraph G(V,E,W) consists of ...
— Set of nodes V
— Set of directed arcs E

* An arcis an ordered pair of
nodes (u,v)

e (u,v) € Eindicates u sends
arctov

e (u,v) € E does not imply that
(vu) € E

— Mapping W of arcs to real values

Values can represent such things as
— Strength of relationship
— Information capacity of tie
— Rates of flow or traffic across tie
— Distances between nodes
— Probabilities of passing on information
— Frequency of interaction




Dichotomized

Jim
Jill
Jen
Joe

Valued Adjacency Matrix

Jm Jill Jen Joe
- 1| O 1
1 - 1 0
0 1 - 1
1 (O 1 -

Distances btw offices

Jim
Jill
Jen
Joe

Jm Jill Jen Joe
- 3] 9 2
3 - 1 | 15
9 1 - 3
2 115 3 -

e The diagram below uses solid lines to

represent the adjacency matrix, while
the numbers along the solid line (and
dotted lines where necessary)
represent the proximity matrix.

e In this particular case, one can derive

the adjacency matrix by dichotomizing
the proximity matrix on a condition of
p; <= 3.

Jill

Jen




Bipartite graphs

e Used to represent

2'm0de data CHARLOTTE
e Nodes can be Zas
partitioned into

two sets W \\\
(corresponding to e

/ EYLUIA
modes) E14 &@1 '..F “"\
e Ties occur only / & , =

between sets, not &@——
within




Node-related concepts

. @ BRAZEY ° Degree
EE . . .
* — The number of ties incident upon
‘:‘ :"bSTEVE EVANDER ° nOde 1
eerr ° — In a digraph, we have indegree
) T (number of arcs to a node) and
‘o »@GERY outdegree (hnumber of arcs from a
"\RUSS @ICHAEL node)

e Pendant

— A node connected to a

component through only one
edge or arc

* A node with degree 1

@ JOHN

@ FPAULINE
By e Example: John
| * [solate
& TAR — A node which is a component on
its own

 E.g., Evander



Density and Completeness

A graph is complete if all
possible edges are
present.

 The density of a graph is
the number of edges
present divided by the
number that could have
been




Density

* Number of ties, expressed as percentage of the number of
ordered/unordered pairs

Low Density (25%) High Density (39%)
Avg. Dist. = 2.27 Avg. Dist. = 1.76



Density

Number of ties divided by number possible

Ties to Self
Allowed No ties to self

Undirected U = !
| = =
n®/2 n(n—1)/2
| T _ T
Directed 2 n(n-1)

T = number of ties in network
n = number of nodes



Graph traversals

BRAZEY
LEE

Walk
— Any unrestricted traversing of vertices STEVE
across edges (Russ-Steve-Bert-Lee-Steve)
Trail L
— A walk restricted by not repeating an edge
or arc, although vertices can be revisited RUSS GERY
(Steve-Bert-Lee-Steve-Russ) MICHAEL
HARRY
Path A
— A trail restricted by not revisiting any vertex (Steve- PON
Lee-Bert-Russ) JOHN
Geodesic Path HOLLY

— The shortest path(s) between two vertices (Steve-
Russ-John is shortest path from Steve to John)

PAULINE
Cycle ~_ .
— Acycle is in all ways just like a path except that it
ends where it begins
— Aside from endpoints, cycles do not repeat nodes B CAROL

— E.g. Brazey-Lee-Bert-Steve-Brazey JENNIE



Length & Distance

e Length of a path (or any
walk) is the number of
links it has

e The Geodesic Distance
(aka graph-theoretic
distance) between two
nodes is the length of the
shortest path

— Distance from 5to 8 is 2,
because the shortest path
(5-1-8) has two links




Geodesic Distance Matrix

@a /d




Powers of the adjacency matrix

e |If you multiply an adjacency matrix X by itself,
you get XX or X?

* Agiven cell x2ij gives the number of walks from
node i to node j of length 2

* More generally, the cells of Xk give the number
of walks of length exactly kK from each node to
each other


amzoss
Highlight


Matrix powers example

s

Note that shortest path from 1to 5 is
three links, so x, ;= 0 until we get to X3

123456 123456 12 3 456

123456

A | 1| < & o
| o ~ ~ 9 ~
A | N o N <
< N DN N0
o | | n| V| «
N O | | |
A N MO < 1n O
o] 4] | —«] ;] ©
| | N | N N
| | | N | —
o | N| | 1n|
N o | «| =]
ol | o | | ©
" N M < 1n O
O O| dA| d| O
Ol A | 4| on| O
O H| | N| | «d
—| o }m| | «| «
ol | o | | ©
—| ol 4| o] o| o
" N MO < 1n O
o ol ol o]l H| ©
O O HdA| HdA| O]
o o A o] H| ©
o| «| o «| | ©
- ol 4| o] o| o
ol 4| ol ol o| ©
- N M < 1n O

X4

X3

XZ



Subgraphs

e Set of nodes
— lIsjust a set of nodes
e A subgraph
— |s set of nodes together with
ties among them
 Aninduced subgraph

— Subgraph defined by a set of
nodes

— Like pulling the nodes and
ties out of the original graph

b Cc
a d
f e
b C
a
f e

Subgraph induced by considering
the set {a,b,c,f,e}



Components

e Maximal sets of nodes in which every node
can reach every other by some path (no
matter how long)

A graph is connected if it has just one
component

I't is relations (types of tie) that define different
networks, not components. A network that has two
components remains one (disconnected) network.




Components in Directed Graphs

* Strong component

— There is a directed path from each member of the
component to every other

e Weak component

— There is an undirected path (a weak path) from
every member of the component to every other

— s like ignoring the direction of ties — driving the
wrong way if you have to



A network with 4 weak components

Who you go to so that you can say ‘I ran it by , and she says ...’

‘ Recent acquisition
‘ Older acquisitions
O Original company

Data drawn from Cross, Borgatti & Parker 2001.



Strong components

BILL

DON
HAF{R
HOLLY

*MICHAEL

PAT

‘ JENNIE

ANN




Cutpoints and Bridges

e Cutpoint

— A node which, if
deleted, would
increase the
number of
components

* Bridge

— A tie that, if removed,
would increase
the number of
components

If a tie is a bridge, at least one of its
endpoints must be a cutpoint




Local Bridge of Degree K

e Atie that connects nodes that would
otherwise be at least k steps apart

A

B




Cutsets

e Vertex cut sets (aka cutsets)

— A set of vertices S = {u,v,...} of minimal size whose
removal would increase the number of
components in the graph

e Edge cut sets

— A set of edges S = {(u,v),(s,t)...} of minimal size
whose removal would increase the number of
components in the graph



Independent Paths

* A set of paths is node-independent if they share no
nodes (except beginning and end)

— They are line-independent if they share no lines

* 2 node-independent paths from Sto T
* 3 line-independent paths from Sto T



Connectivity

 Node connectivity k(s,t) ® Line connectivity A(s,t)

is minimum number of
nodes that must be
removed to disconnect
s fromt

is the minimum number
of lines that must be
removed to disconnect
s fromt




Bi-Components (Blocks)

A bicomponent is a maximal subgraph such
that every node can reach every other by at
least two node-independent paths

 Bicomponents contain no cutpoints

i 15 T 10

There are four bicomponents in this graph:
{123456},{6 15}, {157},and {78910 11 12}



Menger’s Theorem

e Menger proved that the number of line
independent paths between s and t equals the
line connectivity A(s,t)

e And the number of node-independent paths
between s and t equals the node connectivity
K(u,v)



Maximum Flow

e If ties are pipes with capacity of 1 unit of flow,
what is the maximum # of units that can flow
from s to t?

 Ford & Fulkerson show this was equal to the
number of line-independent paths

T




THE END



Special Types of Relations

A Y
' |- D
rg B
l 3 »C
4: ‘A
Injective (1 to 1) Bijective
Every “tie” goes to 1 to 1 correspondence

a different other

n o 2

X
|
2
3
_
4

Surjective (onto)



