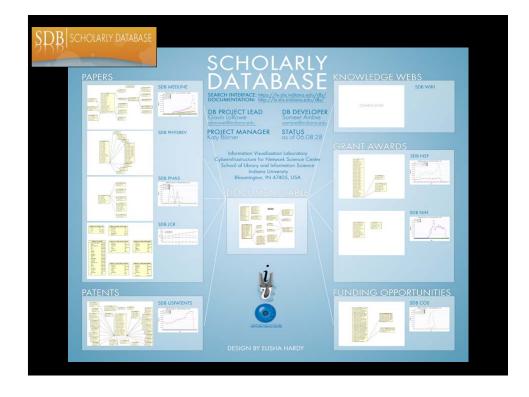
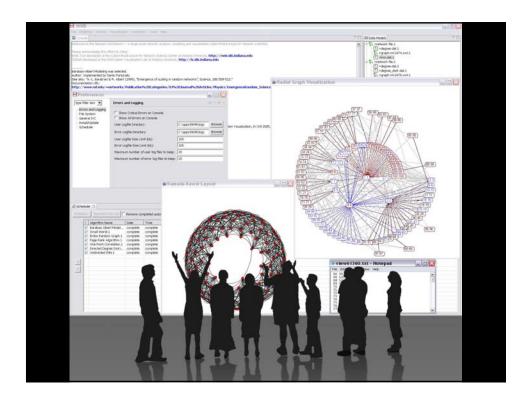

Visualizing Japanese Co-authorship Data

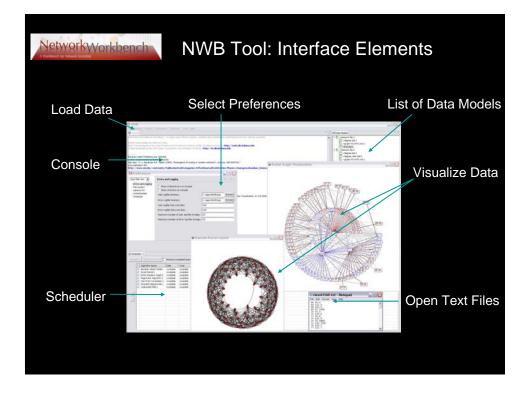


Gavin LaRowe & Katy Börner, Indiana University, USA Ryutaro Ichise, National Institute of Informatics, Japan

> Information Visualisation Conference 2007 Zurich, Schweiz



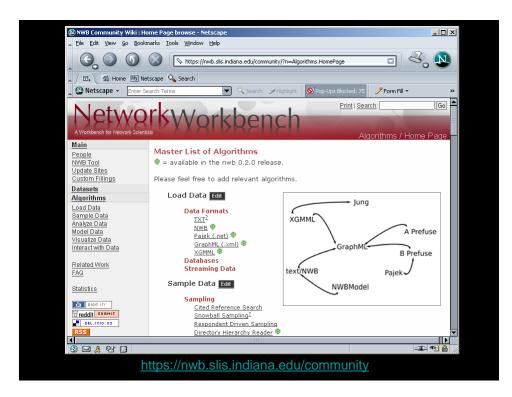
00			
		COLO	TADACE
	- D 1	SCHO	ALADADE
0.0			


Scholarly Database: # Records & Years Covered

Datasets available via the Scholarly Database (* future feature)

Dataset	# Records	Years Covered	Updated	Restricted Access
Medline	13,149,741	1965-2005	Yes	
PhysRev	398,005	1893-2006		Yes
PNAS	16,167	1997-2002		Yes
JCR	59,078	1974, 1979, 1984, 1989 1994-2004		Yes
USPTO	3,179,930	1976-2004	Yes*	
NSF	174,835	1985-2003	Yes*	
NIH	1,043,804	1972-2002	Yes*	
Total	18,021,560	1893-2006	4	3

NetworkWorkbe	Network Workbench (NWB)
Investigators:	Katy Börner, Albert-Laszlo Barabasi, Santiago Schnell, Alessandro Vespignani & Stanley Wasserman, Eric Wernert
Software Team	: Lead: Weixia (Bonnie) Huang
	Developers: Bruce Herr, Ben Markines, Santo Fortunato, Cesar Hidalgo, Ramya Sabbineni, Vivek S. Thakre, & Russell Duhon
Goal:	Develop a large-scale network analysis, modeling and visualization toolkit for biomedical, social science and physics research.
Amount:	\$1,120,926 NSF IIS-0513650 award.
Duration:	Sept. 2005 - Aug. 2008
Website:	http://nwb.slis.indiana.edu



Networ	SWork	bench
--------	-------	-------

NWB Tool 0.2.0: List of Algorithms

Category	Algorithm	Language
Preprocessing	Directory Hierarchy Reader	JAVA
	Erdös-Rényi Random	FORTRAN
	Barabási-Albert Scale-Free	FORTRAN
Modeling	Watts-Strogatz Small World	FORTRAN
	Chord	JAVA
	CAN	JAVA
	Hypergrid	JAVA
	PRU	JAVA
	Tree Map	JAVA
	Tree Viz	JAVA
	Radial Tree / Graph	JAVA
Visualization	Kamada-Kawai	JAVA
	Force Directed	JAVA
	Spring	JAVA
	Fruchterman-Reingold	JAVA
	Circular	JAVA
	Parallel Coordinates (demo)	JAVA
Tool	XMGrace	

Analysis Algorithm	Language
Attack Tolerance	JAVA
Error Tolerance	JAVA
Betweenness Centrality	JAVA
Site Betweenness	FORTRAN
Average Shortest Path	FORTRAN
Connected Components	FORTRAN
Diameter	FORTRAN
Page Rank	FORTRAN
Shortest Path Distribution	FORTRAN
Watts-Strogatz Clustering Coefficient	FORTRAN
Watts-Strogatz Clustering Coefficient Versus Degree	FORTRAN
Directed k-Nearest Neighbor	FORTRAN
Undirected k-Nearest Neighbor	FORTRAN
Indegree Distribution	FORTRAN
Outdegree Distribution	FORTRAN
Node Indegree	FORTRAN
Node Outdegree	FORTRAN
One-point Degree Correlations	FORTRAN
Undirected Degree Distribution	FORTRAN
Node Degree	FORTRAN
k Random-Walk Search	JAVA
Random Breadth First Search	JAVA

Visualizing Japanese Co-authorship Data

Gavin LaRowe & Katy Börner, Indiana University, USA Ryutaro Ichise, National Institute of Informatics, Japan

> Information Visualisation Conference 2007 Zurich, Schweiz

Introduction

This paper reports a bilbiometric analysis of an evolving co-author network composed of 5,009 articles from Transactions D. Information Systems journal of the Institute of Electronics Information and Communication Engineers (IEICE) for the years 1993 to 2005.

Networks from this data set were subsequently generated, producing metrics used for further analysis. We were particularly interested in whether the characteristics of these networks were similar or different than those of often-cited networks found in popular literature regarding co-authorship networks for other scientific disciplines.

Prior Research

Most of the prior research regarding co-authorship networks in Japanese literature was performed during the mid-1990s by public policy analysts focusing on academic collaboration.

Recent studies by Professor Ichise and others have looked at co-authorship networks in the context of data mining and information visualization.

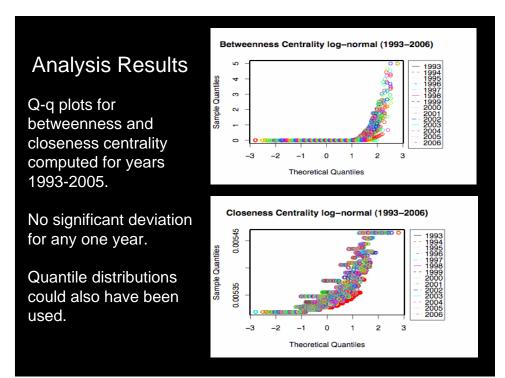
Other studies in Japan have used co-authorship networks as a mechanism to study the effect conferences play in initiating and sustaining collaborations between researchers.

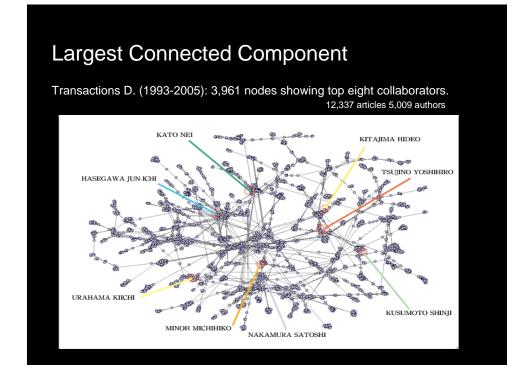
Method

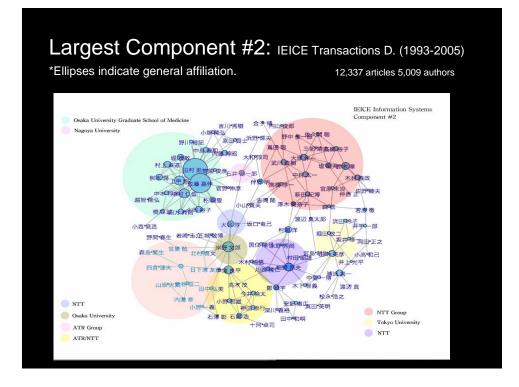
Data

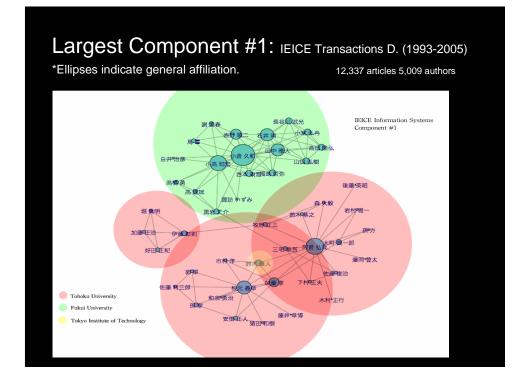
- Provider: National Institute of Informatics, Tokyo, Japan
- Years: 1993 2005
- Institute of Electronics Information and Communication Engineers - Japanese analogue to IEEE
- Four main journals:
 - A. Fundamentals
 - B. Communications
 - C. Electronics
 - D. Information Systems
- 12,337 articles
- 5,009 unique authors

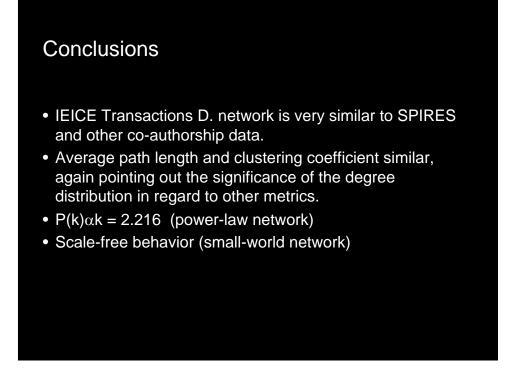
Method


Data Processing


- Transformation: converted initial data from EUC_JP to UTF-8
- For each year, unique authors extracted using Japanese surnames. Custom scripts used to lean/identify/disambiguate names.
- Data status: < 3% transcription errors. Identifiable errors were cleaned manually.
- Data parsed into individual lexemes and proper names
- Data placed into relational database
- Functions in database used to build network tables in Pajek format
- R used to generate time-series metrics


AR	AC	DC	CC	BC	DE	DI	(k)	l	C
402	2.9	0.4599	0.00116	0.03019	0.00053	2	1.208	0.46	0.562
377	2.87	0.5646	0.00132	0.00660	0.00053	2	1.045	0.57	0.6777
327	2.77	0.3329	0.00136	0.00682	0.00075	2	1.076	0.33	0.6034
406	2.94	0.3778	0.00111	0.00889	0.00045	2	1.086	0.37	0.5878
491	3.12	0.3762	0.00089	0.00887	0.00042	2	1.086	0.37	0.6912
466	3.24	0.3733	0.00089	0.00356	0.00033	2	1.037	0.37	0.6462
415	2.95	0.2573	0.00100	0.00302	0.00033	2	1.045	0.26	0.6263
452	3.68	0.4336	0.00087	0.04808	0.00026	3	1.329	0.43	0.5745
454	3.66	0.3317	0.00084	0.00838	0.00038	2	1.092	0.33	0.6807
257	3.14	0.2702	0.00147	0.05286	0.00028	3	1.514	0.27	0.6316
343	3.16	0.3047	0.00139	0.00970	0.00040	2	1.113	0.3	0.6667
276	3.63	0.4159	0.00108	0.00541	0.00042	2	1.05	0.42	0.6687
343	3.75	0.3444	0.00085	0.00597	0.00029	2	1.065	0.34	0.6866
5,009	3.00	1.2900	0.00013	5.33230	0.00017	15	1.29	4.3	0.505
,							173	4.0	0.726
							3.59	9.7	0.496
							3.90	9.5	0.590
							11.5	6.0	0.760
	402 377 327 406 491 466 415 452 454 257 343 276 343 5,009 and total C), *clc	402 2.9 377 2.87 327 2.77 406 2.94 491 3.12 466 3.24 415 2.95 452 3.68 454 3.66 257 3.14 343 3.16 276 3.63 343 3.75 5,009 3.00 und totals: No. C), *closeness	402 2.9 0.4599 377 2.87 0.5646 327 2.77 0.3329 406 2.94 0.3734 491 3.12 0.3733 452 3.68 0.4336 454 3.66 0.3317 257 3.14 0.2570 343 3.16 0.3047 276 3.63 0.4159 343 3.75 0.3444 5,009 3.00 1.2900	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Analysis Results


- We computed centrality measures such as degree, closeness, betweenness as well as distributions for centrality data for each year and plotted using a q-q plot to identify significant changes. Clustering coefficient and average path length were also generated for each year.
- Degree distribution does not deviate from other popular co-authorship networks; fat-tail distribution.
- Changes in coauthorship pattern or paradigm almost always reflected in clustering coefficient and average path length.
- No significant increases in average no. of co-authors, etc.

Acknowledgements

We'd like to thank the National Institute of Informatics, Tokyo, Japan for funding this work by a MOU grant and for providing the data used in this study.