

		_ Doma	in Visualiza	itions Are U	sed For …			
QUESTIONS RELATED TO								
		Fields and paradigms	Communities and networks	Research performance or competitive advantage	Commonly used algorithms			
Aı	uthors		Social structure, intellectual structure, some dynamics	Use network characteristics as indicators	Social network packages, MDS, factor analysis, Pathfinder networks			
D	ocuments	Field structure, dynamics, paradigm development		Use field mapping with indicators	Co-citation, co-term, vector space, LSA, PCA, various clustering methods			
Jo	ournals	Science structure, dynamics, classification, diffusion between fields			Co-citation, intercitation			
w	/ords		Cognitive structure, dynamics		Vector space, LSA, LDA (20)			
In m	dicators and etrics			Comparisons of fields, institutions, countries, etc., input-output	Counts, correlations			

Boyack, K.W. (2004). Mapping Knowledge Domains: Characterizing PNAS. Proceedings of the National Academy of Sciences of the US, 101(S1), 5192-5199.

Process Flow for Visualizing KDs								
DATA UNIT OF		MEASURES	LAYOUT (often one code does both similarit	DISPLAY				
EXTRACTION	JANALYSIS		SIMILARITY	ORDINATION	I			
SEAR CHES ISI INSPEC Enq Index Mediine Researchindex Patents etc. BROADENING By Otation By terms	COMMON CHOICES Journal Document Author Term	COUNTS/FREQUENCIES Attributes (e.g. terms) Author otations Co-ditations By year THRESHOLDS By counts	SCALAR (unit by unit matrix) Direct ottation Co-ditation Co-mbined linkage Co-word / oxferm Co-dassfication VECTOR (unit by attribute matrix) Vector space model (words/terms) Latent Semantic Analysis (words/terms) ind. Singular Value Decomp (SVD) CORRELATION (if desired) Pearson's R on any of above	DIMENSIONALITY REDUCTION Eigenvector/ Eigenvalue solutions Factor Analysis (FA) and Principal Components Analysis (PCA) Multi-dimensional scaling (MDS) LSA Pathfinder networks (PFNet) Self-organizing maps (SOM) includes SOM, ET-maps, etc. CLUSTER ANALYSIS SCALAR Triangulation Force-directed placement (FDP)	INTERACTION Browse Pan Zoom Filter Query Detail on demand ANALYSIS			
		Börner, Informati	K., Chen, C., & Boyack, K.W. (2003) ion Science and Technology, 37 (B. Cronin	. Visualizing Knowledge Domains. Ir , ed.), Information Today, Medford, l	n Annual Review of NJ, pp. 179-255.			

Computing Mutual Information

- Use method of Gibbons and Roth (Genome Research v. 12, pp. 1574-1581, 2002)
- K-means clustering (MATLAB) for each graph layout
 - 8 different similarity measures
 - 3 different k-means runs at 100, 125, 150, 175, 200, 225, 250 clusters
- Quality metric (mutual information) calculated as
 - MI(X,Y) = H(X) + H(Y) H(X,Y)
 - where $H = -\sum Pi \log 2Pi$
 - Pi are the probabilities of each [cluster, category] combination
 - X (known ISI category assignments), Y (k-means cluster assignments)
- Z-score (indicates distance from randomness, Z=0=random)
 - Z = (MIreal MIrandom)/ Srandom
 - MIrandom and Srandom vary with number of clusters, calculated from 5000 random solutions

Is science driven by prolific single experts or by high-impact coauthorship teams?

Contributions of this study:

- New approach to allocate citational credit.
- Novel weighted graph representation.
- Visualization of the growth of weighted co-author network.
- · Centrality measures to identify author impact.
- Global statistical analysis of paper production and citations in correlation with co-authorship team size over time.
- Local, author-centered entropy measure.

Börner, Katy, Dall'Asta, Luca, Ke, Weimao and Vespignani, Alessandro. (in press) Studying the Emerging Global Brain: Analyzing and Visualizing the Impact of Co-Authorship Teams. *Complexity*, special issue on *Understanding Complex Systems*.

Allocation of Citational Credit

• This work awards citational credit to co-author relations so that the collective success of co-authorship teams – as opposed to the success of single authors – can be studied.

Weighted co-authorship networks

- Prior work by M. Newman (2004) focused on an evaluation of the strength of the connection in terms of the continuity and time share of a collaboration.
- The focus of this work is on the productivity (number of papers) and the impact (number of papers and citations) of co-authorship teams.

Exemplification of impact measures using the InfoVis **Contest dataset:**

Table 1. Author ranking based on degree (# co-authors), productivity strength (# produced papers), citation strength (# received citations), and betweenness (# of shortest paths that pass through this author).

Degree k	#	Productivity Strength Sp	#	Citation Strength S₀	#	Betweenness	#
BShneiderman	23	BShneiderman	7.62	SKCard	88	BShneiderman	10893
JDMackinlay	17	SKCard	5.71	JDMackinlay	67	SKCard	10618
SKCard	17	JDMackinlay	4.37	BShneiderman	66	JDMackinlay	8357
GRobertson	16	Daniel_AKeim	4.11	GRobertson	64	Stephen_GEick	7420
Allison_Woodruff	15	Steven F. Roth	3.96	Christopher Ahlberg	36	Chris_Olston	5165
Lucy_TNowell	15	John_TStasko	3.92	RRao	34	Ben_Bederson	4791
Roberto_Tamassia	15	Stephen_GEick	3.67	Ben_Bederson	25	Mei_CChuah	4718
Ben_Bederson	15	GRobertson	3.46	Peter_Pirolli	21	GRobertson	3187
Harpreet_SSawhney	14	Ben_Bederson	3.40	Steven_FRoth	20	Steven_FRoth	2063
MStonebraker	14	Marc_HBrown	3.33	Brian_Johnson	17	EHHChi	1718

•Distributions are progressively broadening in time, developing heavy tails.

•We are moving from a situation with very few authors of large impact and a majority of peripheral authors to a scenario in which impact is spread over a wide range of values with large fluctuations for the distribution.

Benefits of Co-Authoring

Publication strength S_p and the citation strength S_p of authors versus the degree of authors (number of co-authors) for the 74-04 time slice. Solid lines are a guide to the eye indicating the presence of two different regimes as a function of the co-authorship degree *k*.

Zipf plot of the relative sizes of graph components

Zipf plot is obtained by ranking all components of the co-authorship graphs in decreasing order of size and then plotting the size and the corresponding rank of each cluster on a double logarithmic scale.

Largest component is steadily increasing both in size and impact.

All four curves cross -> the few best ranked components increase at the expense of the smaller ones.

The second largest component is much smaller than the largest one.

