Ontologies & CCF: Anatomical Structures, Cell Types, and Biomarkers

Katy Börner, MC-IU, HIVE

"External Collaborations" Session @ HuBMAP All-Hands Meeting May 20, 2020

Andreas Bueckle Ph.D. Candidate Information Science Indiana University abueckle@indiana.edu

Leonard Cross Senior Interaction Designer Intelligent Systems Engineering Indiana University lecross@iu.edu

Bruce W. Herr, II Senior System Architect Intelligent Systems Engineering Indiana University bherr@indiana.edu

Matthew Martindale **CNS Center Assistant** Intelligent Systems Engineering Indiana University masmarti@iu.edu

Ellen M. Quardokus **Research Scientist** Indiana University ellenma@indiana.edu

Lisel Record Associate Director, CNS Center Intelligent Systems Engineering Indiana University recorde@indiana.edu

Griffin Weber Associate Professor **Biomedical Informatics** Harvard Medical School griffin weber@hms.harvard.edu

What is a CCF?

The Common Coordinate System (CCF) consists of ontologies and reference object libraries, computer software, e.g., user interfaces, and training materials that

- enable biomedical experts to semantically annotate tissue samples and to precisely describe their locations in the human body ("<u>registration</u>"),
- align multi-modal tissue data extracted from different individuals to a reference coordinate system ("<u>mapping</u>") and,
- provide tools for searching and browsing HuBMAP data at multiple levels, from the whole body down to single cells ("<u>exploration</u>").

CCF Requirements

The CCF must capture major **anatomical structures**, cell types, and biomarkers and their interrelations across multiple levels of resolution.

It should be **semantically explicit** (using existing ontologies, e.g., Uberon, CL) and spatially explicit (e.g., using 3D reference organs for registration and exploration).

Body

- Body
- Kidney (Left, Right)
- Aorta
- Renal artery
- Renal vein
- Ureter

Organ

- Renal capsule
- Renal pyramid
- Renal cortex
- Renal medulla
- Renal calvx
 - Renal pelvis

Functional Tissue Unit

- Nephron
- Renal corpuscle

2.5 mm

- Proximal convoluted tubule
- Loop of Henle
- Distal convoluted tubule
- Connecting tubule
- Collecting duct

FTU Sub-structure(s) Cellular

- Bowman's capsule
- Glomerulus
- Efferent arteriole
- Afferent arteriole
- Parietal epithelial cell Capillary
 - endothelial cell
 - Mesangial cell
 - Podocvte

ASCT Tables

Anatomical Structures and Cell Types (ASCT) tables aim to capture the partonomy of anatomical structures, cell types, and major biomarkers (genomic, epigenomic, transcriptomic, proteomic, lipidomic, and metabolomic).

Structure/Re	Substructure/Sub	Cell Type	Subset of Marker Genes
gion	region		
Renal	Bowman's Capsule	Parietal epithelial cell	CRB2*, CLDN1*
Corpuscle	Glomerulus	Podocyte	NPHS2*, PODXL*, NPHS1*
		Capillary Endothelial Cell	EHD3*, EMCN*, HECW2*,
			FLT1*, AQP1*
		Mesangial Cell	POSTN*, PIEZO2*, ROBO1*,
			ITGA8*

Partial ASCT Table from

• El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019; 828665. doi:10.1101/828665

Table 3: Cell types and associated markers from KPMP Pilot 1

transcriptomic studies. Asterisk denotes genes detected by more than one technology. *Italics* genes detected by a single technology.

LCOIT	nology. nanos, ge	fies deteoted by a singl	e reennology	•			
Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments		
	Bowman's Capsule	Parietal epithelial cell	PEC	CRB2*, CLDN1*			
Renal	Glomerulus	Podocyte	POD	NPHS2*, PODXL*, NPHS1*			
Corpuscle		Capillary Endothelial Cell	GC-EC	EHD3", EMCN*, HECW2*, FLT1*, AQP1*			
		Mesangial Cell	MC	POSTN*, PIEZO2*, ROBO1*, ITGA8*			
	Proximal Tubule	Proximal Tubule Epithelial Cell (general)	РТ	CUBN*, LRP2*, SLC13A1*, ALDOB*, GATM*			
		Proximal Convoluted Tubule Epithelial Cell Segment 1	PT-S1	SLC5A2*, SLC5A12*			
		Proximal Tubule Epithelial Cell Segment 2	PT-S2	SLC22A6*	among the		
		Proximal Tubule Cell Epithelial Segment 3	Proximal Tubule Cell Epithelial PT-S3 PDZK1IP1*, Segment 3				
	Loop of Henle, Thin Limb	Descending Thin Limb Cell (general)	DTL	CRYAB*, VCAM1*, AQP1*, SPP1*	CLDN10 low		
		Ascending Thin Limb Cell (general)	ATL	CRYAB*, TACSTD2*, CLDN3*	AQP1 low to none		
	Loop of Henle, Thick Limb	Thick Ascending Limb Cell (general)	TAL	SLC12A1*, UMOD*	SLC12A3 low to none		
		Cortex-TAL cell	C-TAL	SLC12A1* UMOD*			
		Medulla-TAL cell	M-TAL	SLC12A1* UMOD*			
		TAL-Macula Densa.cell	TAL-MD	NOS1* SLC12A1*			
	Distal Convolution	Distal Convoluted Tubule Cell (general)	DCT	SLC12A3*, TRPM6*			
Tubules		DCT type 1 cell	DCT-1	SLC12A3*, TRPM6	SLC8A1, HSD11B2 (low to none)		
		DCT type 2 cell	DCT-2	SLC12A3*, SLC8A1*, HSD11B2	Has CNT and DCT signature		
	Connecting Tubule	Connecting Tubule Cell (general)	CNT	SLC8A1*, CALB1, TRPV5			
		CNT-Principal Cell	CNT-PC	SLC8A1*, AQP2*, SCNN1G*	SLC12A3 low to		
		CNT-Intercalated Cell	CNT-IC	SLC8A1*, CA2, ATP6VOD2*	without SLC8A1		
		CNT-IC-A cell	CNT-IC-A	SLC8A1*, SLC4A1*, SLC26A7*	CNT structure		
		CNT-IC-B cell	CNT-IC-B	SLC8A1*, SLC26A4*, SLC4A9*	1		
	Collecting Duct	Collecting duct (general) cell	CD	GATA3*	GATA3 may be		
	-	CD-PC (general)	CD-PC		in subpopulation		
		C-CD-PC	C-CD-PC	AQP2*, AQP3*, FXYD4*,	of DCT, CNT		
		M-CD-PC	M-CD-PC	SCNN1G*, GATA3*	and vSMC/P.		
		Outer medulla-CD-PC	OM-CD-PC		SLC8A1, CALB1, TRPV5		
		Inner Medulla-CD cell	IM-CD	AQP2*, SLC14A2			

		Transitional PC-IC cell	URG IC	FXYD4*,	(low to none);
				SLC4A9*/SLC26A7*	Low to No
		CD-IC (general) cell	CD-IC	CA2, ATP6VOD2*	CALCA and KIT
		CD-IC-A (general) cell	CD-IC-A	SLC4A1, SLC26A7*,	in C-CD-IC-A. It
				TMEM213*	may not be
		C-CD-IC-A cell	C-CD-IC-A	SLC26A7*, SLC4A1*	possible to
		M-CD-IC-A cell	M-CD-IC-A	SLC26A7*, SLC4A1, KIT*, CALCA	assign IC or PC to_CNT or CD
		CD-IC-B (general) cell	CD-IC-B		structures
		C-CD-IC-B cell	C-CD-IC-B	SI C449* SI C2644*	without regional
		M-CD-IC-B cell	M-CD-IC-B	OLOWID, OLOLUNI	information of their source.
		Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*	
		EC-Afferent/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*	likely PALMD
Vessels	Endotholial Calls (non	EC-Peritubular capillaries	EC-PTC	PLVAP*	
	glomerular)	EC-Descending Vasa Recta	EC-DVR	TM4SF1*, PALMD	
		EC-Ascending Vasa Recta	EC-AVR	DNASEIL3*	low to none
		EC-Lymphatics	EC-LYM	MMRN1*, PROX1	
Structure/R egion	Sub structure/Sub region	Cell Type	Abbreviation	Subset of Marker Genes	Pertinent negatives/com ments
Interstitium	Stroma (non- glomerular)	Vascular Smooth Muscle/Pericyte (general)	VSMC/P	TAGLN*, ACTA2*, MYH11*, NTRK3, MCAM	
		vSMC/P-Renin	VSMC/P-REN	REN	
		Fibroblast	FIB	DCN*, ZEB2, C7, LUM	
	Immune	Macrophages-Resident	MAC-R	CD163*, IL7R*	
		Macrophage	MAC	S100A9	
		Natural Killer Cell	NKC	NKG7	
		Dendritic Cell	DC	APOE	
		Monocyte	MON	C1QA, HLA-DRA	
		T lymphocyte (general)	T	CD3	
		T Cytotoxic	T-CYT	GZMA	
		B lymphocyte	B	IGJ	

El-Achkar et al. A Multimodal and Integrated Approach to Interrogate Human Kidney Biopsies with Rigor and Reproducibility: The Kidney Precision Medicine Project. bioRxiv. 2019; 828665. doi:10.1101/828665

ASCT Table Usage

ASCT tables guide **CCF Ontology** and **3D Reference Object Library** design that semantically name and spatially place tissue data from different individuals into one CCF (i.e., <u>mapping</u>).

ASCT Table				Ontology	3D Reference Object Library
Structure/Region	Sub structure/Sub region Bowman's Capsule Glomerulus	Cell Type Parietal epithelial Cell Podocyte Canillary: Endothelial Cell		Anatomical Structures Partonomy kidney	
Renal Corpuscle	Proximal Tubule	Mesangial Cell Proximal Tubule Epithelial Cell (general) Proximal Tubule Epithelial Cell Segment 1 Proximal Tubule Epithelial Cell Segment 2 Proximal Tubule Epithelial Cell Segment 2 Descending This Link Cell (segment)	•	kidney capsule cortex of kidney outer cortex of kidney renal medulla	→
	Loop of Henle, Thick Limb	Ascending Infinition Certigeneral) Thick Ascending Limb Cell (general) Cortex-TAL Cell Medulla-TAL Cell TAL-Macula Densa Cell		Cell Types Ontology connective tissue cell pericyte cell	
	Distal Convolution Connecting Tubule	Distal Convoluted Tubule Cell (general) DCT Type 1 Cell DCT Type 2 Cell Connecting Tubule Cell (general) CDT. Drizenal Cell		mesangial cell extraglomerular mesangial cell glomerular mesangial cell	

Tissue blocks are <u>registered</u> into the CCF using the Registration User Interface (RUI), and they can be <u>explored</u> via the Exploration User Interface (EUI).

For the first HuBMAP portal release, 48 tissue blocks were registered.

1st Portal Release: Upload Portal

	MAP		BOES@pitt.edu Edit Profile Logout
HuBMAP [Display ID Gen	erator	
Generate unique iden	tifiers which will be used cor	sortium wide to track sample and associ	ate data with samples.
Source HuBMAP ID *	TEST0005-RK	✓ Look up	Ø
	HuBMAP display id: 1	EST0005-RK	
	type: Organ Organ Type: Kidney (Right) HuBMAP ID: HBM:264-TTTJ-7 Description:	name: 38	
Tissue Sample Type *	FFPE block		Ø
Protocol 1	protocols.io DOI *	https://dx.doi.org/10.17504/protocols.io.p9kdr4w	
	Protocol document *	Cheese a file	0
	do	c, dock and pdf files only	
	Add Protocol		
	Generate IDs for multiple FFPE	olock samples	
	3	Lab IDs and Sample Locations can be screen after generating the HuBMAR	assigned on the next PDs
Description			
			Θ
Metadata	+ Add Metadata		0
Image	+ Add Image	Make sure any uploaded images are de-i	dentified Ø
	Generate ID	Cancel	

•

Thanks go to the IEC for providing screenshots

HuBMAP

0

•

.

1st Portal Release

0

•

•

Early draft - limited functionality and design until more data has been indexed.

ASCT Table Design

The CCF Session at the NIH-HCA meeting—co-organized with Peter Hunter (SPARC) and James Gee (BICCN)—brought together experts across consortia.

In follow up meetings, 10 ASCT tables have been created via collaborations across consortia. Ontology experts, including Chris Mungall and Mark Musen, provided expert comments.

	HuBMAP	RBK	KPMP	SPARC	LungMAP	HTAN	HCA	GUDMAP	Gut Cell Atlas	BICCN	Allen Brain	TCGA	Wellcome	MRC	H2020	GTEx	Total
Kidney	1	1	1	0	0	0	1	1	0	0	0	1	1	1	0	1	9
Liver	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
Spleen	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	4
Heart	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	1	4
Lung	1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	1	10
L intestine/Colon	1	0	0	1	0	1	1	0	1	0	0	1	0	0	0	1	7
S intestine	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
Bladder	1	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	5
Ureters	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Thymus	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
Lymph nodes	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	2
mediastinal lymph node	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Eye	1	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	3
Brain	0	0	0	0	0	0	1	0	0	1	1	1	0	0	1	1	6
Brain stem	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
Cerebellum	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	3
Spinal cord	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	2
Pancreas	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	5
Breast	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	5
Skin	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	3
Pediatric systems	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	2
Ovaries	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Testes	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Cervix	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Uterus	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	5
Blood	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	2
Bone	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Placenta	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Decidua	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Embryo	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
esophagus	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	3
hematopoietic system	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2
immune system bulk	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Stomach	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	3
Thyroid	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Prostate	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	3
Adrenal gland	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	3
Totals	11	1	1	7	1	6	21	4	1	2	2	20	7	5	4	21	114

https://tinyurl.com/ASCT10x10

•

•

https://www.humancellatlas.org/coordinators

ASCT Table Meetings

Meetings take place monthly to

- Review and approve tables.
- Formalize and unify table design language.
- Discuss table usage.

We are working on

- Converting tables into machine readable formats, see example for vasculature.
- Compare tables against Uberon, CL, and other ontologies.
- Compare tables against cell types identified in harmonized HuBMAP data and data generated by other efforts.

ASCT Table Usage

Compare cell types in ASCT tables with cell types identified in HuBMAP data. Spleen example: Data from five tissue blocks from 4 spleens were harmonized.

Male

Male

Female

Male

UFL0001-SP-2-8, cube 1 UFL0001-SP-3-4, cube 3 UFL0002-SP-2-2, cube 3

UFL0003-SP-2-2, cube 1

UFL0004-SP-2-1, cube 4

Data provided by TMC-UFL

ASCT Table Usage

Seurat harmonization results: Cell counts and prediction scores

UFL0001-SP-3-4, cube 3 UFL0003-SP-2-2, cube 1 UFL0002-SP-2-2, cube 3 UFL0001-SP-2-8, cube 1 UFL0						JFL0004-SP-2-1, cube 4			
HBM336.FWTN.636	6010	HBM396.RPRR.624	9382	HBM472.NTNN.543	8738	HBM556.QMSM.776	5273	HBM984.GRBB.858	6328
alpha-beta T cell	372	alpha-beta T cell	773	alpha-beta T cell	1497	alpha-beta T cell	515	alpha-beta T cell	878
B cell	1349	B cell	4463	B cell	6550	B cell	1407	B cell	2803
CD141-positive myeloid dendritic cell	55	CD141-positive myeloid dendritic cell	89	CD141-positive myeloid dendritic cell	19	CD141-positive myeloid dendritic cell	44	CD141-positive myeloid dendritic cell	17
CD14-positive monocyte	1851	CD14-positive monocyte	2242	CD14-positive monocyte	238	CD14-positive monocyte	872	CD14-positive monocyte	802
CD1c-positive myeloid dendritic cell	185	CD1c-positive myeloid dendritic cell	18			CD1c-positive myeloid dendritic cell	162	CD1c-positive myeloid dendritic cell	19
erythroblast	177	erythroblast	42	erythroblast	17	erythroblast	89		
gamma-delta T cell	151	gamma-delta T cell	57	gamma-delta T cell	30	gamma-delta T cell	176	gamma-delta T cell	1241
hematopoietic stem cell	73	hematopoietic stem cell	84	hematopoietic stem cell	56	hematopoietic stem cell	79	hematopoietic stem cell	30
low-quality	93	low-quality	71	low-quality	94	low-quality	129	low-quality	131
natural killer cell	594	natural killer cell	1307	natural killer cell	84	natural killer cell	460	natural killer cell	267
plasma cell	460	plasma cell	171	plasma cell	101	plasma cell	360	plasma cell	75
plasmablast	22	plasmablast	7	plasmablast	28	plasmablast	1	plasmablast	36
splenic endothelial cell	424	splenic endothelial cell	47	splenic endothelial cell	6	splenic endothelial cell	588	splenic endothelial cell	1
splenic fibroblast	15	splenic fibroblast	5	splenic fibroblast	6	splenic fibroblast	20	splenic fibroblast	2
splenic macrophage	189	splenic macrophage	6	splenic macrophage	12	splenic macrophage	371	splenic macrophage	26
_									

HBM336.FWTN.636	:	1 HBM396.RPRR.624		HBM472.NTNN.543		HBM556.QMSM.776		HBM984.GRBB.858	
alpha-beta T cell		alpha-beta T cell	0.81531392	alpha-beta T cell	0.935717083	alpha-beta T cell	0.852839869	alpha-beta T cell	0.819379533
B cell		1 B cell	0.966724409	B cell	0.978509075	B cell	0.958394632	B cell	0.963947327
CD141-positive myeloid dendritic cell		CD141-positive myeloid dendritic cell	0.714928889	CD141-positive myeloid dendritic cell	0.870885148	CD141-positive myeloid dendritic cell	0.890455775	CD141-positive myeloid dendritic cell	0.615445273
CD14-positive monocyte		CD14-positive monocyte	0.940118127	CD14-positive monocyte	0.937989865	CD14-positive monocyte	0.938657155	CD14-positive monocyte	0.963592885
CD1c-positive myeloid dendritic cell		CD1c-positive myeloid dendritic cell	0.563719677			CD1c-positive myeloid dendritic cell	0.803740621	CD1c-positive myeloid dendritic cell	0.783471674
erythroblast		1 erythroblast	0.532657229	erythroblast	0.694290983	erythroblast	0.978894926		
gamma-delta T cell		1 gamma-delta T cell	0.539497766	gamma-delta T cell	0.502216796	gamma-delta T cell	0.740586674	gamma-delta T cell	0.904053159
hematopoietic stem cell		1 hematopoietic stem cell	0.726385726	hematopoietic stem cell	0.764763311	hematopoietic stem cell	0.75724491	hematopoietic stem cell	0.648865012
low-quality		l low-quality	0.680657174	low-quality	0.68445931	low-quality	0.649134708	low-quality	0.728998052
natural killer cell		1 natural killer cell	0.770988817	natural killer cell	0.623959124	natural killer cell	0.833128238	natural killer cell	0.718629642
plasma cell		1 plasma cell	0.945743141	plasma cell	0.947816498	plasma cell	0.954210246	plasma cell	0.82474102
plasmablast		1 plasmablast	0.445989963	plasmablast	0.593308367	plasmablast	0.535441087	plasmablast	0.558989332
splenic endothelial cell		splenic endothelial cell	0.921750546	splenic endothelial cell	0.649250648	splenic endothelial cell	0.949515886	splenic endothelial cell	0.555504115
splenic fibroblast		splenic fibroblast	0.883399167	splenic fibroblast	0.886345281	splenic fibroblast	0.878256094	splenic fibroblast	0.820886903
splenic macrophage		splenic macrophage	0.646221909	splenic macrophage	0.827945537	splenic macrophage	0.853436501	splenic macrophage	0.880481635

Data provided by MC-NYGC

Example: Converting tables into machine readable formats - Kidney vasculature

nt Arteriole EC-AEA al Cell GC-EC	SERPINE2*, TM4SF1* EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
nt Arteriole EC-AEA al Cell GC-EC	SERPINE2*, TM4SF1* EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
nt Arteriole EC-AEA al Cell GC-EC	SERPINE2*, TM4SF1* EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
nt Arteriole EC-AEA al Cell GC-EC	SERPINE2*, TM4SF1* EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
nt Arteriole EC-AEA al Cell GC-EC	SERPINE2*, TM4SF1* EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
al Cell GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
nt Arteriole EC-AEA	SERPINE2*, TM4SF1*
illaries EC-PTC	PLVAP*
a Recta EC-DVR	TM4SF1*, PALMD
Recta EC-AVR	DNASEIL3*
eneral) EC	EMCN*, PECAM1*, FLT1*
	laries EC-PTC a Recta EC-DVR Recta EC-AVR neral) EC

Vasculature	renal artery [L/R]				Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal artery [L/R]	segmental arteries [superior, inferior, anteri	or, posterior]		Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal artery [L/R]	interlobar arterties			Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal artery [L/R]	arcuate arteries			Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}			Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}	afferent arterioles {nephron}		EC-Afferent/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}	afferent arterioles {nephron}	glomerulus capillaries {glomerulus}	Capillary Endothelial Cell	GC-EC	EHD3*, EMCN*, HECW2*, FLT1*, AQP1*
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}	efferent arterioles {nephron}		EC-Afferent/Efferent Arteriole	EC-AEA	SERPINE2*, TM4SF1*
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}	efferent arterioles {nephron}	peritubular capillaries	EC-Peritubular capillaries	EC-PTC	PLVAP*
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}	efferent arterioles {nephron}	descending vasa recta	EC-Descending Vasa Recta	EC-DVR	TM4SF1*, PALMD
Vasculature	renal artery [L/R]	cortical radiate arteries {cortex}	efferent arterioles {nephron}	ascending vasa recta	EC-Ascending Vasa Recta	EC-AVR	DNASEIL3*
Vasculature	renal vein [L/R)	cortical radiate veins {cortex}	venules {nephron}		Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal vein [L/R)	cortical radiate veins {cortex}			Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal vein [L/R)	arcuate veins			Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*
Vasculature	renal vein [L/R)	interlobar veins			Endothelial Cell (general)	EC	EMCN*, PECAM1*, FLT1*

Capturing vasculature details is critically important for a vasculature based CCF

Weber, Griffin M, Yingnan Ju, and Katy Börner. 2020. "Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body". Frontiers in Cardiovascular Medicine 7 (29): doi: 10.3389/fcvm.2020.00029.

ASCT Table Discussion

Please join the CCF breakout for a discussion of

- Existing tables
- Planned analyses and visualizations of ASCT+B tables
- Table usage for research design and quality control

Contact MC-IU via infoccf@indiana.edu for questions and suggestions.

Apply for a **Postdoc position** to advance ASCT+B curation and usage, e.g., to understand vascular pathways in the human body (arteries, veins, capillaries, and lymph vessels).

Acknowledgements

HuBMAP Consortium (https://hubmapconsortium.org)

Thanks go to all the **patients** that agreed to volunteer healthy tissue and open use of their data.

National Institutes of Health

TMCs

Sanjay Jain

TMC-UCSD

St. Louis

3D Models

Jeffrey Spraggins TMC-Vanderbilt Vanderbilt University Washington University,

Clive Wasserfall TMC-UFL University of Florida

Marda Jorgensen TMC-UFL University of Florida

KristenBrowne Medical Imaging and 3D Modeling Specialist NIAID

Katy Börner MC-IU PI CNS Director

Griffin Weber Assoc. Professor of Medicine Harvard Medical School

Lisel Record MC-IU PM CNS Associate Director

Bruce Herr II Sr. Systems Architect/PM

Ellen Quardokus Yingnan Ju Sr. Research Analyst PhD Candidate

Leonard Cross Sr. UX/UI Designer Matthew Martindale Software Developer Center Assistant

Adam Phillins Software Developer

