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ABSTRACT

Graph theory mathematically describes the general principles that govern the

development and organization of complex systems. Several analyses examined

phonological word-forms in the mental lexicons of adults and of children in the context

of graph theory. The results show that the adult lexicon has a short path length, a high

clustering coefficient, and a power-law degree distribution. These characteristics were not

present at earlier points in time (16- and 18-months of age), suggesting that the lexicon

undergoes significant restructuring and self-organization over time. The implications of

viewing the lexicon from a graph theoretic perspective for word learning and lexical

access during perception and production are discussed. This perspective may also unify

accounts of the evolution, development, and processing of language, as well as connect

Psychology and Cognitive Science to a more universal theory that underlies many

complex systems found in the real world.
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Many objects in the world and the relationships that exist between them can be

represented graphically as a network with objects depicted as nodes (sometimes called

vertices) and relationships between nodes depicted as links (sometimes called edges). For

example, people in a city can be represented as nodes, with links connecting them if the

people are acquainted with each other. Similarly, web pages on the World Wide Web

may be represented as nodes, and hyperlinks connecting one page to another would

constitute a link between nodes. The depiction of diverse problems from several different

areas of research as abstract graphs (or networks) has enabled mathematicians in the sub-

field known as graph theory (as well as physicists and computer scientists) to discover

some of the general principles that govern complex systems in the real world.

Some systems are highly regular and can be depicted as a lattice (see the top panel

in Figure 1). Notice that each node is linked to each adjoining node in the system, like a

ring of people holding hands. In order to communicate a message from the node (i.e.,

person) labeled 1 to the node labeled 5, the message must go through nodes 2, 3, and 4.

Similarly, to communicate a message from node 1 to node 6, the message must go

through nodes 2, 3, 4 and 5. More links must be traversed if the message must go to a

more distant node.

---------------------------------
Insert Figure 1 about here

---------------------------------
In contrast, some systems, as in the bottom panel of Figure 1, are connected at

random (see Erdos & Rényi, 1960, for pioneering work on random graphs). Continuing

with the example of trying to send a message between nodes, consider again sending a

message from node 1 to node 6. In this case, a direct link exists, enabling rapid

transmission of the message. Although fewer nodes were traversed to communicate the
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message from node 1 to node 6 in the random graph than in the lattice, this may not

always be the case. If the links were distributed in a different random configuration, it

may be impossible to ever communicate a message from node 1 to 6 (consider sending a

message from node 1 to 4 in the present configuration). Now consider sending a message

from node 1 to node 5. In this case, there is no direct link between the two nodes. In order

to communicate the message it must be sent indirectly through nodes 9, 7, and 10. An

example of a relatively random network in the real world is the national highway system:

a highway directly links some, sometimes distant, cities. In the case of other cities,

however, you can’t get there (directly) from here.

Between the extremes of ordered and random graphs lies another class of

graphs—collectively called small world networks—that has recently received a great deal

of attention from graph theory researchers (e.g., Albert & Barabási, 2002; Watts &

Strogatz, 1998). These graphs, which are representative of many complex systems in the

real world, have some characteristics of regular graphs, and some characteristics of

random graphs. The right combination of these characteristics enables these systems to be

dynamic and to convey information very efficiently. Despite fragile appearances, these

systems are robust and highly resistant to damage. The present analyses will examine the

organization of phonological word-forms in the mental lexicon of adults to determine if

these representations are structured in a regular fashion like a conventional dictionary,

randomly listed in lexical memory, or organized in a way that lies somewhere in between

these two extremes, making the lexicon an efficient, dynamic system that is resistant to

error or damage.
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What makes a small-world?

Small-world networks are identified by their characteristic path lengths and

clustering coefficients (e.g., Barabási & Albert, 1999; Watts, 1999; Watts & Strogatz,

1998). Path length refers to the number of links that must be traversed to connect any two

nodes in the network. The maximum path length, or longest path between two nodes in

the network, is referred to as the diameter of the network. Despite being rather large

systems (i.e., they have many nodes), a relatively small number of links must be traversed

to reach any two nodes in the network as evidenced by a small average path length (and

diameter). The relatively small distance between any two nodes in the graph affords the

network great processing efficiency.

Nodes in small-world networks also tend to form clusters. A cluster can be

thought of in the following way: “…your friend’s friend is also your friend” (Newman,

2003; pg. 56). That is, several nodes connect to a common node, and to each other as

well. The probability that two neighbors of a given node are connected to each other is

referred to as the clustering coefficient (Watts & Strogatz, 1998). Small-world networks

have a high clustering coefficient compared to the clustering coefficient of a randomly

structured network of comparable size, indicating that the neighbors of a given node are

highly interconnected. This characteristic adds to the efficiency of the network and

contributes to the robustness and resilience of the network in the face of damage.

One type of small world graph is a scale-free network (Albert & Barabási, 2002;

Barabási & Albert, 1999). Like other small-world networks, a scale-free network has a

relatively small path length and a high clustering coefficient. A scale-free network is

distinguished from other types of small-world graphs (i.e., networks that lie between
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ordered and random graphs) by its unique degree distribution. The number of links that a

node has is referred to as degree (k). One can plot the number of nodes that have one link,

the number of nodes that have two links, etc. on a frequency distribution. When plotted

on a log-log scale, this frequency distribution is referred to as the degree distribution.

Figure 2 displays two common types of degree distributions.

---------------------------------
Insert Figure 2 about here

---------------------------------
In random graphs, the links between nodes are randomly placed with equal

probability producing a degree distribution that approximates a Poisson distribution (the

top panel in Figure 2). That is, in a randomly connected network almost every node will

have the same number of links, with only a small number of nodes having greater or

fewer links. The peak in the Poisson distribution corresponds to the “stereotypical node”

in the network, or the scale of the network. In contrast, scale-free networks do not have a

“stereotypical node” in the degree distribution; therefore, they are free of a scale, or

“scale-free.” The degree distribution of scale-free networks does not resemble a Poisson

distribution, but rather typically follows a power-law distribution as illustrated in the

bottom panel of Figure 2 (see Dorogovtsev & Mendes, 2003 for other types of small-

world graphs and the degree distribution that those graphs produce). Typically, the slope

of the best fitting line of the degree distribution—the degree exponent, γ—in a scale-free

network is 2 < γ < 3 (cf., Montoya & Solé, 2002).

Barabási and Albert (1999; Barabási, Albert & Jeong, 1999) suggest that scale-

free graphs with power-law degree distributions arise as the result of two mechanisms:

growth and preferential attachment. Growth refers to the addition of new nodes to the

network over time. Preferential attachment is the tendency for new nodes to connect to
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nodes that are already highly connected. Barabási and Albert (1999; Barabási et al., 1999)

found that both growth and preferential attachment are necessary to create the power law

degree distribution in scale-free networks. They suggested that a complex system that

does not grow or that grows without preferential attachment does not exhibit a power-law

degree distribution (cf., Ferrer i Cancho & Solé, 2001a, for other mechanisms that may

account for a power-law degree distribution).

Albert and Barabási (2002) discussed many complex systems in the real world

that exhibit the characteristics of scale-free networks, including the World Wide Web, the

Internet, collaborations among movie actors and among scientists, human sexual

contacts, cellular networks, ecological networks, and phone call networks. Given the

ubiquity of scale-free networks in natural and artificial systems found in the real world, it

is perhaps not surprising that the same principles might organize complex cognitive

systems. Indeed, Yook, Jeong, and Barabási (2001 as cited in Albert & Barabási, 2002;

see also Batagelj, Mrvar & Zaversˇnik, 2002; Ferrer i Cancho & Solé, 2001b, Motter et

al., 2002, and Steyvers & Tenenbaum, submitted) demonstrated that semantic

concepts—defined variously as synonym-pairs, core words from dictionary definitions,

co-occurring words in text, or free-associates obtained from Nelson, McEvoy, and

Schreiber (1999)—exhibit the characteristics of scale-free networks.

In the present analysis phonological representations of English words were

examined to determine if word-forms in the mental lexicon of adults were organized with

the same principles that govern the development of scale-free networks. By viewing

phonological word-forms from a graph theoretic perspective, unique insight might be

gained with regards to the development, learning, and processing of spoken language.
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Specifically, how might the organization of word-forms in the lexicon influence the

learning of novel phonological forms of new words (e.g., Beckman & Edwards, 2000;

Gathercole, Hitch, Service, & Martin, 1997; Storkel, 2001, 2003; Storkel & Morrisette,

2002), and how does the organization of phonological word-forms in the lexicon

influence lexical access during the perception and production of spoken language?

Graph theoretic analysis of phonological word-forms in the lexicon

Approximately 20,000 words (n = 19,340) from a database of computer-readable

phonological transcriptions (Nusbaum, Pisoni, & Davis, 1984) were examined with

Pajek, a program for large network analysis and visualization (Batagelj & Mvrar, 1998).

In the graph of the adult lexicon, each node represented a word in the database. A link

connected two nodes if the two words were phonologically similar. Phonological

similarity was operationally defined with a single phoneme substitution, addition or

deletion metric (Landauer & Streeter, 1973). For example, a link was placed between the

nodes for the word cat and the words cap, hat, cut, at and scat because a single phoneme

can be substituted, added or deleted from cat to form those words. This metric was

selected because of its use in previous studies that examined the influence of

phonological similarity on word learning in children (e.g., Charles-Luce & Luce, 1990,

1995; Storkel, 2002) and the influence of phonological similarity on language processing

in adults (e.g., Luce & Pisoni, 1998; Vitevitch & Luce, 1999). Other methods to assess

similarity among word-forms will produce comparable results (e.g., Batagelj et al., 2002;

also note that comparable results were found among Ferrer i Cancho & Solé, 2001b;



9

Steyvers & Tenenbaum, submitted, etc. using several different metrics of semantic

similarity).

Several characteristics of the lexical network must be assessed and compared to a

comparably sized random network (i.e., Erdos & Rényi, 1960) to determine if the

phonological word-forms in the adult lexicon are organized like a small-world network,

and more specifically like a scale-free network. The following characteristics must be

assessed: average path length, diameter, clustering coefficient, and degree exponent.

These characteristics (except for the degree exponent) were assessed in the lexical

network with the Pajek network program. The same program was used to generate ten

randomly linked networks of comparable size for comparison.

The values for the average path length and diameter of the lexical network should

be comparable to those values obtained from a randomly connected network. If the

lexical network has a small-world topology, then the clustering coefficient for the lexical

network should be much greater than the clustering coefficient for a comparably sized

random network. The values of these characteristics for the phonological word-forms in

the lexical network and the mean values of these characteristics for 10 comparably sized

random networks are displayed in Table 1.

---------------------------------
Insert Table 1 about here

---------------------------------
The average path length for the lexical network was 6.05. That is, on average

approximately 6 links had to be traversed to connect any two nodes in the network. For

example, to get from the word cat to the word dog, one must traverse the links between

the nodes corresponding to the words bat, bag, and bog. This value accords well with the

mean value obtained from the random networks (8.44).
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The maximum path length, or diameter, of the lexical graph was 29 links. That is,

the longest path between two nodes in the graph was the 29 links between the word

connect and the word rehearsal (via collect, elect, affect, effect, infect, insect, inset,

insert, inert, inurn, epergne, spurn, spin, sin, sieve, live, liver, lever, leva, leaven, heaven,

haven, raven, riven, rivet, revert, reverse, rehearse). Although the obtained value is

somewhat larger that the mean diameter value obtained from the random networks (19.0),

it is not greatly divergent (i.e., different by an order of magnitude).

Recall that the clustering coefficient measures the probability that two neighbors

of a given node are connected to each other (Watts & Strogatz, 1998). Small-world

networks have a larger clustering coefficient compared to the clustering coefficient of a

randomly structured network of comparable size, indicating that the neighbors of a given

node are highly interconnected. The phonological word-forms in the lexical network had

a clustering coefficient of .045, which is over 250 times larger than the clustering

coefficient for a comparably sized random network (.000162). The values for average

path length, diameter, and the clustering coefficient obtained for the lexical network

suggest that phonological word-forms in the adult lexicon are not stored as a random list

of words, nor are they rigidly organized like a conventional dictionary. Rather, the

organization of phonological word-forms in the mental lexicon of adults lies between

randomness and complete order. That is, phonological word-forms in the mental lexicon

exhibit a small-world topology.

To determine if the mental lexicon of adults is a scale-free network the degree

exponent must be assessed. Recall that scale-free networks exhibit a degree distribution

that approximates a power-law with a degree exponent,  γ,  of 2 < γ < 3. Figure 3 displays
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a frequency distribution of the lexical network with the number of links per node on the

x-axis, and the number of nodes that have a given number of links on the y-axis. The

inset in Figure 3 displays this information on a log-log scale (i.e., the degree distribution).

---------------------------------
Insert Figure 3 about here

---------------------------------
In a randomly connected network the degree distribution follows a Poisson

distribution, however, in a scale-free network the degree distribution follows a power-law

(see Figure 2). As shown in Figure 3, the phonological word-forms in the mental lexicon

exhibit a degree distribution that approximates a power-law. The degree exponent, γ, was

1.96, which closely approximates the values of 2 < γ < 3 typically observed for scale-free

networks. The results of the present analyses suggest that the phonological word-forms in

the mental lexicon of adults are, indeed, organized in a scale-free topology.

The lexicon as a scale-free network

Recall that Barabási and Albert (1999; Barabási et al., 1999) suggested that the

power-law degree distribution that is characteristic of scale-free topologies is the result of

growth and preferential attachment in the system. Although learning new words is

something that is typically associated with and primarily studied in children (e.g., Storkel

2001, 2003), adults can and do learn novel sound patterns/new words (e.g., Storkel,

Armbrüster & Hogan, submitted), suggesting that even the adult lexicon undergoes

growth.

The growth that occurs in scale-free networks does not proceed randomly, but

instead occurs with preferential attachment. That is, a new node being added to the

system will tend to connect to a node in the system that is already highly connected rather
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than connect to a sparsely connected node in the system. If preferential attachment played

a role in organizing the phonological word-forms in the mental lexicon of adults, then a

word that was learned early in life should be linked to many similar words, whereas a

word that was learned later in life should be linked to few similar words. Indeed, Storkel

(2004) found a positive correlation between age-of-acquisition and neighborhood density

or, the number of words that are phonologically related to a target word. Words acquired

early in life tended to have many phonological neighbors (i.e., dense phonological

neighborhoods), whereas words acquired later in life had fewer phonologically neighbors

(i.e., sparse phonological neighborhoods). If preferential attachment plays a role in

organizing the mental lexicon, one would further predict that phonological

neighborhoods become “denser” over time. Charles-Luce and Luce (1990, 1995)

analyzed a set of words in the lexicons of adults and children 5- and 7-years old, and

found that the neighborhood density for words in the adult lexicon were indeed denser

than the neighborhood density for those same words in the 5- and 7-years old lexicons.

These findings are consistent with the hypothesis that preferential attachment guides

growth in the mental lexicon and other complex systems with scale-free topologies.

Another hypothesis that one might derive from the mechanism of preferential

attachment is that words with dense phonological neighborhoods should be more easily

acquired or learned than words with sparse phonological neighborhoods. Storkel (2001,

2003) found that pre-school age children learned novel words that had common sound

sequences/dense neighborhoods more rapidly than novel words that had rare sound

sequences/sparse neighborhoods. Similarly, Storkel et al. (submitted) found that college-

age adults learned novel words with dense neighborhoods more rapidly than novel words
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that had sparse neighborhoods. These results suggest that the learning of novel words is

highly dependent on the words that are already known. Specifically, a novel word that is

similar to many known words may be learned more quickly than a novel word that is

similar to few known words. Moreover, this set of seemingly unrelated results is

consistent with the predictions derived from preferential attachment, a mechanism that

plays a role in the growth and development of scale-free networks (e.g., Barabási &

Albert, 1999).

Other characteristics of complex systems that exhibit scale-free topologies include

efficient processing, and robustness to error or damage. For example, Albert et al., (2000)

found in their analysis of the World Wide Web that damage to a scale-free network does

not result in catastrophic failure in the system. Rather, damage in scale-free networks

tends to affect the less connected nodes because (as shown in Figure 3) there is a greater

prevalence of such nodes in the system. Although there are few nodes that are highly

interconnected (highly interconnected nodes are sometimes referred to as hubs), the

interconnectedness of these nodes maintains the integrity of the whole system. Even if a

hub is damaged, the presence of other (but relatively less connected) hubs will absorb the

extra load and enable processing to continue. Only if every node has been damaged or

removed will a scale-free network catastrophically fail.

When viewing the mental lexicon as a complex system with a scale-free topology,

we also see quite rapid and relatively error-free language processing in normal adults

(e.g., Levelt, 1989). In addition, we observe patterns of topological robustness in the

mental lexicon that resemble the pattern found by Albert et al., (2000) in their analysis of

the World Wide Web: error/damage tends to affect the less connected nodes. For
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example, Vitevitch (1997; 2002a) found that normal adults made more speech production

errors for words with few phonological neighbors than for words with many phonological

neighbors (see also Harley & Bown, 1998; James & Burke, 2000; Vitevitch & Sommers,

2003). More errors for words with few phonological neighbors than for words with many

phonological neighbors were also observed in experiments investigating short-term

memory (e.g., Roodenrys et al., 2002), and in patients with aphasia (e.g., Gordon & Dell,

2001). Finally, words with few phonological neighbors were also produced more slowly

than words with many phonological neighbors (Vitevitch, 2002a). These findings are

consistent with the hypothesis that the mental lexicon is a (topologically robust) scale-

free network, and that error or damage in such systems primarily affects the less

connected nodes.

Considering the phonological word-forms in the adult mental lexicon as a

complex system with a scale-free topology produced several predictions that were not

only consistent with findings from studies of word learning in children and adults, but

also produced predictions that were consistent with findings from studies of adult

language processing. There are few (if any) models of adult language processing that also

account for the growth and development of that system (e.g., McClelland & Elman,

1986). Similarly, theories of word learning account for how new word-forms are added to

the lexicon, but say little (if anything) about the changes in processing that might result

from the addition of that new word-form to the lexicon (e.g., Gupta & MacWhinney,

1997). By taking a graph theoretic perspective of the mental lexicon, it may be possible

to describe the mechanisms that underlie the acquisition and learning of novel word-



15

forms, as well as the processes involved in on-line language processing in one theoretical

account.

When does a scale-free lexicon emerge?

The previous analysis demonstrated that the organization of phonological word-

forms in the adult lexicon exhibited a scale-free topology. The previous analysis,

however, did not provide any information about when this highly efficient and robust

lexical structure emerged during language development. A great deal of word learning

research suggests that the mental lexicon may undergo restructuring or reorganization

with the acquisition of new words over time (e.g., Charles-Luce & Luce, 1990, 1995;

Strokel, 2002). The traditional—though not uncontroversial—benchmark for the onset of

some form of cognitive reorganization that results in a “vocabulary spurt” in children

occurs when 50 words have been acquired (e.g., Goldfield & Reznick, 1996; Mervis &

Bertrand, 1995). Various mechanisms have been proposed for the vocabulary spurt (e.g.,

Golinkoff et al. 2000; Nazzi & Bertoncini, 2003). The present analyses will determine if

this “critical period” is also the point at which a scale-free topology emerges in the

lexicon.

The same network statistics calculated for the adult lexicon were calculated on the

lexicons of children of various ages to better determine when a scale-free topology

emerged from the lexicon. The norms from the MacArthur Communicative Development

Inventory (CDI) were used to (conservatively) estimate the lexicons of children at various

ages. The earliest age at which 50% of the children knew a given word was used to

determine which words children knew at a particular age. Network analyses were
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performed with Pajek for the lexicons of children at the end points of the CDI (16

months, n = 24 words, and 30 months, n = 490 words), as well as the two ages that

straddled the 50-word point (18 months, n = 38 words, and 19 months, n = 78 words).

The results of these analyses are shown in Table 2.

---------------------------------
Insert Table 2 about here

---------------------------------
Consider the network characteristics for the lexicon at 16- and 18-months of age.

The average path length (l), diameter (D), and clustering coefficient (C) for these graphs

suggest that the lexical network is a small-world network. However, the degree exponent,

γ, is considerably less than the values typically associated with scale-free networks (2 <

γ < 3), which suggests that early in development, the mental lexicon may not have a

scale-free topology (although it does lie somewhere between order and randomness). Not

until 19-months of age does the degree exponent (γ = 2.41) reach a value typically

associated with scale-free networks (2 < γ < 3); a similar value (γ = 2.09) was also

observed at 30-months.

Recall that 18- to 19-months of age corresponds with the developmental

milestone of “50-words” and the age at which the onset of the “vocabulary spurt” is often

observed. It is striking that the present graph theoretic analyses demonstrated the

emergence of a highly efficient and robust (i.e., scale-free) topology in the lexical

network at the same age/developmental milestone. The results of this analysis support the

idea that the phonological word-forms in the mental lexicon may indeed undergo some

form of reorganization at this age/point in development. Once the phonological word-

forms have self-organized into a scale-free network, the mechanisms of growth and

preferential attachment may produce a complex cognitive system that is a highly efficient
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word learning and language processing machine. The variability in age/vocabulary size

associated with reaching this developmental milestone may be due to different initial

starting states of the system. That is, the first few sound patterns that are learned (e.g.,

Mandel, Jusczyk & Pisoni, 1995) may play a large role in determining how easily

subsequent words are acquired.

Limitations of the present analyses

The present examination of the mental lexicon used a minimal scale-free model

characterized by undirected and binary links between nodes, and a simple preferential

attachment rule. Although viewing the mental lexicon within the context of this very

simple model is consistent with several findings in diverse areas of language research,

future examinations of the lexicon from the graph theoretic perspective may benefit from

the use of different kinds of links and additional attachment-related parameters to better

capture other findings in the literature.

Consider first the links used in the present analysis. If two words differed by a

single phoneme, a link was assumed to exist between the word nodes. If two words

differed by more than one phoneme, no link existed between the words. Although this

simple metric accounts for much of the variability observed in spoken language

experiments (e.g., Luce & Pisoni, 1998), it may not adequately capture the phonological

similarity that might exist between words that differ by more than one phoneme, such as

morphologically related words (e.g., cover-uncover), or smaller words that are embedded

in longer words (e.g., cat-catfish). Instead of using binary links (absent or present) as in

the present analysis, future graph theoretic accounts of the lexicon could weight the links
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with values that range from 0 to 1 to better capture similarity relationships among words

with the same onset (Vitevitch, 2002b), among words that differ by more than one

phoneme, or among phonological word-forms that are also orthographically similar (e.g.,

Ziegler, Muneaux & Grainger, 2003).

The links in the present analysis were also undirected. The implication of

undirected links is that the similarity relationship between two words is symmetrical,

which may not be a valid assumption (e.g., Tversky & Kahneman, 1981). Consider the

case of small words embedded in longer words: cat may be judged to be more

phonologically similar to catfish than catfish is to cat. The use of directed links in future

graph theoretic accounts of the lexicon might better account for such asymmetric

similarity relationships.

Consider now the preferential attachment mechanism described in the present

analysis. A logical (though extreme) prediction would be that every word that an

individual learned would resemble the first word that was acquired. Although the initial

state of a system may influence development, there is no language in which every word

sounds similar to every other word; comprehension under less than ideal conditions (e.g.,

noise) would prove most difficult in such a language. Albert and Barabási (2002)

discussed other mechanisms that together might better account for the scale-free

topologies observed in the real world. An example of one of these mechanisms is a fitness

parameter, η (see for example Dorogovtsev & Mendes, 2000 for an age-related

parameter). By varying the fitness of each node even a recently added (and therefore less

connected) node might successfully compete with older more connected nodes to attract

the links of newly added nodes.
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In the case of the mental lexicon, the fitness parameter might be equivalent to

occurrence-related characteristics of words, such as how often the word occurs in the

language (word frequency), or how long ago the word last occurred (i.e., recency;

MacKay & Burke, 1990); each of these factors influences how quickly and accurately a

word is processed. Including additional parameters in future graph theoretic accounts of

the lexicon might lead to better accounts of word learning and word retrieval processes,

as well as better explanations of the changes that occur in those processes over time (i.e.,

as we age, or decrease the rate at which we learn new words once we have acquired a

lexicon of sufficient size to function as an adult; see also Dorogovtsev & Mendes, 2003).

Advantages of the graph theoretic perspective

In viewing the mental lexicon as a complex system, we may no longer need to

postulate separate accounts for acquisition/learning and adult processing. Previous

accounts of word learning did not account for adult language processing (e.g., Gupta &

MacWhinney, 1997), and previous accounts of adult language processing did not account

for the learning of new words (e.g., McClelland & Elman). In contrast, the unique

characteristics of scale-free networks do not exist without the complex interaction

between the current topology of the system and the growth of the system via preferential

attachment (Albert & Barabási, 2002). The interdependence of these factors in complex

systems provides a unique opportunity to integrate previously disparate psychological

theories describing word learning (e.g., Metsala & Walley, 1998; Storkel, 2002), adult

language processing (e.g., Luce & Pisoni, 1998), and the effects of aging on language

processing (e.g., Sommers, 1996).
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Looking at the mental lexicon in graph theoretic terms places the lexicon, and

other complex psychological systems, in a broader context, and allows us to see how

cognitive systems—like other complex systems found in the world—are governed by the

same underlying principles. Thus, accounts of language acquisition, word learning, and

adult language processing may not need to be accounted for by mechanisms that are

specific to language. Instead, the processes used to acquire and retrieve information from

the lexicon can be considered special instances of universal processes found in all

complex systems.

In addition to providing a way to integrate word learning in children and language

processing in adults, a graph theoretic perspective might also provide some insight into a

curious set of results from studies that examined language processing in adults. In

English, Vitevitch (1997, 2002a) found that phonological neighbors facilitate the retrieval

of word-forms during speech production. This result contrasts with what is typically

found in studies of spoken word recognition, where phonological neighbors compete

among each other during retrieval (e.g., Luce & Pisoni, 1998). The contradictory

influence of phonological neighbors in speech production and word recognition in

English is even more perplexing when one considers the findings of Vitevitch and

Rodríguez (submitted): phonological neighbors facilitated word recognition in Spanish.

What are the conditions in which phonological neighbors facilitate retrieval and what are

the conditions in which phonological neighbors compete among each other during

retrieval? Graph theoretic studies examining the situations that lead to cooperation or

competition among agents in games such as the prisoner’s dilemma (e.g., Cohen, Riolo &
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Axelrod, 1998) may provide some insight into the situations that lead to facilitation or

competition among phonological word-forms.

The present graph theoretic analyses showed that phonological word-forms in the

mental lexicon self-organize to form a scale-free network, typified by a small path length

between nodes, a high clustering coefficient, and a power-law degree-distribution. The

similarity of the mental lexicon to other complex systems in the real world suggests that

universal principles may govern growth and development in all of these domains. Graph

theory may represent a new paradigm for psychology that could not only unify and

integrate previously disparate areas of research, but more importantly, may increase our

understanding of complex cognitive systems by enabling us to examine the entire system

rather than focus on one part of it.
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Figure 1. The top panel illustrates an ordered graph with 15 nodes and 2 links per node.
The bottom panel illustrates a randomly connected graph with 15 nodes and (on average)
2 links per node. Graphs made with Pajek software (Batagelj & Mrvar, 1998).
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Figure 2. Examples of typical degree distributions in log-log plots. The top panel

illustrates a Poisson distribution found in random graphs. The bottom panel illustrates a

power-law degree distribution found in scale-free networks.
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Figure 3. The number of nodes with k links (P(k)) as a function of number of links (k).
The inset shows the same values plotted on a log-log scale (i.e., the degree distribution).
Note the degree distribution follows a power-law.
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Table 1. Network statistics for the adult lexicon and comparable random graphs

Network Characteristic Lexical Network Random Network
n 19,340 19,340

<k> 3.23 3.23
l 6.05 8.44 (.04)
D 29 19 (.816)
C .045 .000162 (.000047)
γ 1.96 n/a

Note: For the random network the listed value is the mean (and standard deviation) from
10 simulations. n = number of nodes, <k> = average number of connections, l = the

average path length, D = the diameter of the network, C = the clustering coefficient,  γ =
degree exponent; typically 2 < γ < 3 for scale-free networks.
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Table 2. Network statistics for the lexicons of children at 16, 18, 19, & 30 months of age

Network
Characteristic 16 months 18 months 19 months 30 months

n 24 38 78 490
<k> .42 .39 .47 1.31
l 1.00 [1.33] 1.11 [1.30] 1.65 [1.79] 6.28 [11.05]
D 1 [2] 2 [2] 3 [4] 17 [29]
C .042 [0] .026 [0] .034 [0] .089 [0]
γ 1.63 1.76 2.41 2.09

Note: n = number of nodes, <k> = average number of connections, l = the average path

length, D = the diameter of the network, C = the clustering coefficient, γ = degree
exponent; typically 2 < γ < 3 for scale-free networks. For comparison, square brackets
contain the values for l, D and C for a comparably sized random network at each age.

There were no clusters in any of the random graphs at any of the ages examined,
therefore the values of C for the random graphs at all ages = 0.


