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Spectral density plots 
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There’s information inside the spectra 

  These figures show the normalized Laplacian. Banerjee and Jost (2009) also noted such shapes in the spectra. 
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Words in dictionary definitions 
111k vertices, 2.7M edges 

Internet router network 
192k vetices, 1.2M edges 
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Overview 
Graphs and their matrices 
 

Data for our experiments 
 

Issues with computing spectra 
 

Many examples of graph spectra 
 

A curious property around the eigenvalue one 
 

Computing spectra for large networks 
 

Ongoing studies 
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Why are we interested in the spectra? 
Modeling 
 
Properties 

 Moments of the adjacency 
 
Regularities 
 
Anomalies 
 
Network Comparison 

 Fay et al. 2010 – Weighted Spectral Density 
  

 
 
 
 

David Gleich (Purdue) IU Seminar 

The network is as19971108 from Jure’s snap collect (a few thousand nodes) and we insert random connections from 50 nodes 
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Matrices from graphs 
Adjacency matrix 
                           

       if               
                                   
 

Laplacian matrix 
                       
                 
                            
 

Normalized Laplacian matrix 
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Everything is undirected.   Mostly connected components only too. 

Not covered 
Signless Laplacian matrix 
 
Incidence matrix 
(It is incidentally discussed) 

 
Seidel matrix 
 
Heat Kernel 

 

Random walk matrix 
                 
 
Modularity matrix 
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Erdős–Rényi Semi-circles 
Based on Wigner’s 

semi-circle law. 
 
The eigenvalues of the 
adjacency matrix for 
n=1000, averaged 
over 10 trials 

  
Semi-circle with outlier 
if average degree is 
large enough.   
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Observed by Farkas and in the book “Network Alignment” edited by Brandes (Chapter 14) 

Eigenvalue 

C
o
u
n
t 

Warning 
Adjacency 
matrix! 
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Previous results 
Farkas et al. Significant deviation from the semi-

circle law for the adjacency matrix 
 
Mihail and Papadimitriou Leading eigenvalues of the 

adjacency matrix obey a power-law based on 
the degree-sequence 

 
Chung et al. Normalized Laplacian still  

obeys a semi-circle law if min-degree large 
 
Banerjee and Jost Study of types of patterns that 

emerge in evolving graph models – explain 
many features of the spectra 
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In comparison to other empiric studies 
We use “exact” computation of spectra, 

instead of approximation. 
 
We study “all” of the standard matrices 

over a range of large networks. 
 
Our “large” is bigger. 
 
We look at a few random graph models 

 preferential attachment 
random powerlaw 
copying model 
forest fire model 

David Gleich (Purdue) IU Seminar 9/51 



ISSUES WITH 
COMPUTING 

SPECTRA 

Why 
you  
should 
be 
very 
careful 
with 
eigenvalues. 
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Matlab! 
Always a great starting point.   

My desktop has 24GB of RAM (less than $2500 now!) 
 
24GB/8 bytes (per double) = 3 billion numbers  

~ 50,000-by-50,000 matrix 
 
Possibilities 

 D = eig(A) – needs twice the memory for A,D 
[V,D] = eig(A) – needs three times the memory for A,D,V 

 
These limit us to ~38000 and ~31000 respectively. 
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Bugs – Matlab 
 
 
 
eig(A) 
Returns incorrect eigenvectors 

Seems to be the result of a bug in Intel’s MKL library.  Fixed in R2011a 
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Bug – ScaLAPACK default 
 
 
sudo apt-get install scalapack-openmpi 
Allocate 36000x36000 local matrix 
Run on 4 processors 
 
Code crashes 

Fixed in upcoming Debian libscalapack 
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Bug – LAPACK 
 
 
Scalapack MRRR  
Compare standard lapack/blas to atlas performance 
Result: correct output from atlas 
Result: incorrect output from lapack 
Hypothesis: lapack contains a known bug that’s apparently in 

the default ubuntu lapack 
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Moral 
 
 
 
Always test your software. 
Extensively. 
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EXAMPLES 
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Data sources 
SNAP Various 100s-100,000s 

SNAP-p2p Gnutella Network 5-60k, ~30 inst. 

SNAP-as-733 Autonomous Sys. ~5,000, 733 inst. 

SNAP-caida Router networks ~20,000, ~125 inst. 

Pajek Various 100s-100,000s 

Models Copying Model 1k-100k 9 inst. 324 gs 

Pref. Attach 1k-100k 9 inst. 164 gs 

Forest Fire 1k-100k 9 inst. 324 gs 

Mine Various 2k-500k 

Newman Various 

Arenas Various 

Porter Facebook 100 schools, 5k-60k 

IsoRank, Natalie Protein-Protein <10k , 4 graphs 
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Thanks to all who make data available 
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Big graphs 
Arxiv 86376 1035126 Co-author 

Dblp 93156 356290 Co-author 

Dictionary(*) 111982 2750576 Word defns. 

Internet(*) 124651 414428 Routers 

Itdk0304 190914 1215220 Routers 

p2p-gnu(*) 62561 295756 Peer-to-peer 

Patents(*) 230686 1109898 Citations 

Roads 126146 323900 Roads 

Wordnet(*) 75606 240036 Word relation 

web-nb.edu(*) 325729 2994268 Web 
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(*) denotes that this is a weakly connected component of a directed graph.   
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A $8,000 matrix computation 
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925 nodes and 7400 processors on Redsky for 10 hours normalized Laplacian matrix 
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Indiana’s Facebook Network 
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Data from Mason Porter.  Aka, the start of a $50,000,000,000 graph. 

Warning 
Adjacency 

marix! 

Warning 
Laplacian 

marix! 
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These are cases where we have multiple instances of the same graph.   

Yes! 
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Already known? 
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Just the facebook spectra. 
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Already known? 
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I soon realized I was searching for “spectre” instead of spectrum, oops. 
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Spikes? 
Unit eigenvalue 
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Banerjee and Jost explained how evolving graphs should produce repeated eigenvalues 

Repeated rows 
Identical rows grow the null-space. 
 
Banerjee and Jost 
Motif doubling and joining small 
graphs will tend to cause repeated 
eigenvalues and null vectors. 
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Combining Eigenvalues 
 
If A has an eigenvector 

with a zero 
component, then 

 
 
“A + B” (as in the figure) 

has the same 
eigenvalue with 
eigenvector extended 
with zeros on B. 
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Bannerjee and Jost observed this for the normalized Laplacian. 
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Spikes! 
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1.5, 0.5 

1.33 (two!) 

1.5 

1.5 (two) 

1.833 
0.565741 
1.767592 

0.725708 
1.607625 
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Classic spectra 
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From NASA: http://imagine.gsfc.nasa.gov/docs/science/how_l1/spectral_what.html 
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Random power law 
12500 vertices, 500 (2.*) / 400 (1.8) min degree 

Random power law 

Generate a power law 
degree distribution.   
 
Produce a random 
graph with a 
prescribed degree 
distribution using the 
Bayati-Kim-Saberi 
procedure. 
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Preferential Attachment 
Start graph with a k-node clique.  Add a new node and  
connect to k random nodes, chosen proportional to degree. 
 

David Gleich (Purdue) IU Seminar 
Semi-circle in log-space! 
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Copying model 
Start graph with a k-node clique.  Add a new node and pick a 
parent uniformly at random.  Copy edges of parent and make 
an error with probability     
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Obvious follow up here: does a random sample with the same degree distribution show the same thing? 
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Forest Fire models 
Start graph with a k-node clique.  Add a new node and pick a 

parent uniformly at random.  Do a random “bfs’/”forest 
fire” and link to all nodes “burned” 
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Reality vs. graph models 
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Where is this going? 
We can compute 
spectra for large 
networks if 
needed. 
 

Study relationship 
with known power-
laws in spectra 
 

Eigenvector 
localization 
 

Directed Laplacians 
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Just the degree distribution?  No 
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Facebook is not a copying model 
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Why is one separated sometimes? 
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Separation in copying, forest-fire 
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Note, the axes on these fiures aren’t comparable – different plotting scales – but the shapes are. 
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Forest-fire plots 
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Strong separation in random powerlaw 
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Not edge-density alone 
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Not edge-density alone 
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COMPUTING 
SPECTRA OF 

LARGE NETWORKS 
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Redsky, Hopper I, Hopper II, and a Cielo testbed.  Details if time.   
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Eigenvalues with ScaLAPACK 
Mostly the same approach as in LAPACK 
 

1.  Reduce to tridiagonal form  
(most time consuming part) 

2.  Distribute tridiagonals to 
 all processors 

3.  Each processor finds  
all eigenvalues  

4.  Each processor computes a  
subset of eigenvectors  

 

I’m actually using the MRRR algorithm,  
where steps 3 and 4 are better and faster 
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MRRR due to Parlett and Dhillon; implemented in ScaLAPACK by Christof Vomel. 

ScaLAPACK’s 2d block cyclic storage 
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Estimating the density directly 
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This is an old trick in linear algebra.  I know that Fay et al. used it in their weighted spectral density. 

   and          have the same 
eigenvalue inertia if     is non-
singular. 
 
Eigenvalue inertia = (p,n,z) 
Positive eigenvalues 
Negative eigenvalues 
Zero eigenvalues 
If       is diagonal, inertia is 
easy to compute 
 
    has inertia (n-1,0,1) 
       has inertia 
(sum(      ), sum(        ),…) 
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Alternatives 
Use ARPACK to get extrema 
 
Use ARPACK to get interior around      via the folded 

spectrum 

                     
 

David Gleich (Purdue) IU Seminar 

Farkas et al. used this approach.  Figure from somewhere on the web… sorry! 

Large nearly 
repeated sets of 
eigenvalues will 
make this tricky. 
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Adding MPI tasks vs. using threads 
Most math libraries have threaded versions  

(Intel MKL, AMD ACML) 
Is it better to use threads or MPI tasks? 
 
It depends.  
 
 

Normalized Laplacian for 36k-by-36k co-author graph of CondMat 
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Threads Ranks Time 

1 64 1412.5 

4 16 1881.4 

16 4 Omitted. 

Threads Ranks Time-T Time-E 

1 36 1271.4 339.0 

4 9 1058.1 456.6 

Intel MKL 
Cray libsci 
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Weak Parallel Scaling 
 
Time                     
 
Good strong 

scaling up to 
325,000 vertices 

 
Estimated time for 

500,000 nodes 9 
hours with 925 
nodes (7400 
procs) 
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Code will be available eventually.  Image from good financial cents. 
50 of <Total> 


