Future Directions in SES Research

Elinor Ostrom

Workshop in Political Theory and Policy Analysis Indiana University Center for the Study of Institutional Diversity Arizona State University

Narrow Disciplinary Boundaries Limit Our Scientific Progress

- We need to be developing analytical approaches that draw on disciplinary knowledge but help us to integrate inter-disciplinary understanding
- One approach to is building a common diagnostic framework and using it to conduct research related performance of SESs in regard to governance, productivity, resilience, equity etc
- In the short time of this talk, I will discuss a framework published in *PNAS* in 2007 and in *Science* this July 24 & future research plans

Initial Second Tier Variables

- Identified a broad set of variables frequently mentioned in empirical studies of SES as being important
- Most of these variables have sub-types and subtypes which may be themselves very important in affecting interactions and outcomes
- Several groups of scholars in the US and Europe are working on developing the diagnostic framework further but lets looks at the currently identified secondtier variables
 - Stars next to variables identified by researcher as associated with self-organization to govern resources

- One question is: When will the users of a CPR self-organize?
- Hardin said never!
- · Many policies based on that conclusion
 - Governments must impose uniform solutions on all forests, or fisheries, or water systems in their jurisdictions
 - Many failures and some successes
- But when will the users themselves organize?
- And why will some survive disturbances and other collapse?

To Illustrate Use of Framework – Compare Three Cases in Mexico

- Rarely have quantitative information about the specific benefits and costs for particular users
- With good fieldwork, however, can make an estimate of the differences among cases on a key set of diagnostic variables similar to those that are starred in the framework and discussed above
- Illustrate the variables discussed above with an example for the Northern Gulf of Mexico studied by Xavier Basurto

Comparison of Key Variables for Three Coastal Fisheries in the Gulf of California

	Kino	Peñasco	Seri	
Users (U)		• •		
U1 (number of users)	Rapid growth	Rapid growth	Slow growth	
U5 (local leadership)	Absent	Present	Present	
U6 (trust and reciprocity)	Lacking	High levels	High levels	
U7 (shared local knowledge- mental models)	Lacking	High levels	High levels	
U8 (dependence on resource)	Low	High	High	
U9 (technology)	Same	Same	Same	
Governance System (G)				
GS4 (formal property rights)	Absent	Absent	Absent Present	
GS5 (operational rules)	Present	Present	Present	
GS8 (monitoring and sanctioning)	Mostly absent	Mostly present	Mostly present	
Resource System (R)				
RS3 (resource size)	Large	Small	Small	
RS5a (indicators)	Least available	Moderately available	Mostly available	
RS7 (predictability)	Least predictable	Moderately predictable	Moderately predictable	
Resource Units (RU)				
RU1 (Resource unit mobility)	Low	Low	Low	
Successfully self-organized	No	Yes	Yes	

- Peñasco and Seri SESs were similar on most variables
- Kino was different the Resource Size (RS3) of Kino was MUCH larger
- Indicators of the productivity of the system (RS5a) less in Kino than the other two
- Predictability of system (RS7) less for Kino
- Local leadership (U5) in Kino was absent
- Trust and reciprocity (U6) in Kino were absent

In the Seri village of Punta Chueca (which means crooked point), the Seri have developed a common-property regime to govern their sea pen shell fishery, and successfully control the number of boats that have access to their fishing grounds. At any given time, you observe only 10-15 outboard motor boats using their fishing grounds.

Two SESs have a chance of being robust over time because they selforganized, but is self-organization sufficient?

- No!
- The reserve set up in Peñasco was so successful it attracted fishers from miles away after they had destroyed their own fisheries. Mexican government did not support their right to their own rules. One of the key design principles not present.

Study 100 forests in 14 countries

- Data collected by International Forestry Resources and Institutions program
- Data base contains variables in the SES Diagnostic framework
- Coleman & Steed found when local user groups have right to harvest from the forest, they are more likely to engage in M&S
- Somewhat counterintuitive to many that giving the right to harvest trees from a forest may actually improve forest conditions
- But those with that right do monitor each other

Study of Irrigation Systems

- Over 200 irrigation systems in Nepal
- Here measured conditions at the time of study Farmer Managed Irrigation Systems and Agency Managed Systems
- Farmer Managed Systems have much higher performance measures than Agency Managed Systems

Physical Condition of Irrigation Systems		Types of Governance Structure		Chi- Square	Sig.
		FMIS (%)	AMIS (%)	Value	
Overall condition	Excellent [37]	18.2	8.4	23.02	.00
	Moderately good [144]	67.4	45.8		
	Poor [48]	14.4	45.8		
Technical efficiency	Highly efficient [58]	28.9	12.5	27.30	.00
	Moderately efficient [137]	62.8	50.0		
	Inefficient [33]	8.3	37.5		
Economic efficiency	Highly efficient [66]	33.2	12.5	45.35	.00
	Moderately efficient [140]	63.5	52.1		
	Inefficient [23]	3.3	35.4		

Now Beginning to Plan Over-time Study of Irrigation Systems

- Have initial time period coded for 40+ irrigation systems from around the world initially studied by Tang (1994)
- Trying to locate second or third visits for many of these and enter into a database
- Need input from colleagues to tell us about studies that give good info about structure and performance of irrigation systems that we can put in data base

