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Some Goals

 We are building a library of parallel data mining tools that have
best known (to me) robustness and performance characteristics

— Big data needs super algorithms?

* A lot of statistics tools (e.g. in R) are not the best algorithm and
not always well parallelized

* Deterministic annealing (DA) is one of better approaches to
optimization
— Tends to remove local optima
— Addresses overfitting
— Faster than simulated annealing

Return to my heritage (physics) with an approach |
called Physical Computation (23 years ago) --
methods based on analogies to nature

Physics systems find true lowest energy state if
you anneal i.e. you equilibrate at each
temperature as you cool § Fuure
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Deterministic annealing is better than many well-used

optimization problems
= Started as “Elastic Net” by Durbin for Travelling Salesman Problem TSP

Basic idea behind deterministic annealing is mean field
approximation, which is also used in “Variational Bayes”
and many “neural network approaches”

Markov chain Monte Carlo (MCMC) methods are roughly
single temperature simulated annealing

Why Do I Need to Anneal Beads?
* Less sensitive to initial _ _ £

conditions

* Avoid local optima

* Not equivalent to trying
random initial starts
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Some non-DA Ideas Il

* Dimension reduction gives Low dimension mappings of

data to both visualize and apply geometric hashing
= No-vector (can’t define metric space) problems are O(N?)

* For no-vector case, one can develop O(N) or O(NlogN)
methods as in “Fast Multipole and OctTree methods”

= Map high dimensional data to 3D and use classic
methods developed originally to speed up O(N?) 3D
particle dynamics problems
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Uses of Deterministic Annealing
e Clustering

— Vectors: Rose (Gurewitz and Fox)
— Clusters with fixed sizes and no tails (Proteomics team at Broad)

— No Vectors: Hofmann and Buhmann (Just use pairwise distances)
* Dimension Reduction for visualization and analysis
— Vectors: GTM

— No vectors: MDS (Just use pairwise distances)

e Can apply to general mixture models (but less study)
— Gaussian Mixture Models

— Probabilistic Latent Semantic Analysis with Deterministic
Annealing DA-PLSA as alternative to Latent Dirichlet Allocation
(typical informational retrieval/global inference topic model)
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Deterministic Annealing |

Gibbs Distribution at Temperature T

P(x) = exp( - H(x)/T) / | dy exp( - H(x)/T)

Or P(y) = exp(-H(x)/T+F/T)

Minimize Free Energy combining Objective Function and Entropy
F=<H-TS(P)>=]dy {P(y)H+TP(y) InP(x)}

Where 7y are (a subset of) parameters to be minimized

Simulated annealing corresponds to doing these integrals by Monte
Carlo

Deterministic annealing corresponds to doing integrals analytically
(by mean field approximation) and is naturally much faster than
Monte Carlo

In each case temperature is lowered slowly — say by a factor 0.95 to

0.99 at each iteration
::'{\Fl.gu'.: https://portal.futuregrid.org M M
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Deterministic F>1,>7,~0
Annealing

focal minima
F{y} T)
Solve Linear
Equations for
each temperature

Nonlinear effects
mitigated by
Initializing with
solution at
previous higher
temperature e e e e e
Configuration {y}
. » Minimum evolving as temperature decreases

. » Movement at fixed temperature going to local minima if
not initialized “correctly
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Note 3 types of variables
€ used to approximate real Hamiltonian

'y _subject to annealing

The rest — optimized by traditional methods

CI UUAUWwLWLU NI 11 I\-\.—bl “ il

Po(x) = exp( - Hy(y)/T + F,/T ) approximate Gibbs for H
Fr(Pg) =< Hg-TSy(Py) >|,=<Hzg—Hy> [, + Fy(Py)
Where <...>| ,denotes | dy P (%)

Easy to show that real Free Energy (the Gibb’s inequality)
Fr (Pg) < Fr (Py) (Kullback-Leibler divergence)

Expectation step E is find € minimizing F; (P,) and

Follow with M step (of EM) setting y = <y> |, = | dy Y P.(x)

(mean field) and one follows with a traditional minimization

of remaining parameters
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Implementatlon of DA Central Clustering

* Clustering variables are M (k) (these are y in general
approach) where this is probability point i belongs to
cluster k

* In Central or PW Clustering, take Hy = 2.._,N 2., _,X M.(k) &/(k)

— Linear form allows DA integrals to be done analytically

* Central clustering has g/(k) = (X(i)- Y(k))? and M (k)
determined by Expectation step
P HCentraI = Zi=1|\I Zk=1K M/(k) (X(I)_ X(k))z
— Hontra @nd Hy are identical

* <M(k)> = exp(-e{k)/T )/ 2" exp(-e{k)/T)

* Centers Y(k) are determined in M step

. Grid ps://po regrid.org
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Implementatlon of DA-PWC

Clustering variables are again M (k) (these are y in general
approach) where this is probability point i belongs to cluster k

Pairwise Clustering Hamiltonian given by nonlinear form
Howe = 0.5 220" 2.4 61, j) 21" Mi(k) M (k) / C(k)

O(i, j) is pairwise distance between points i and j

with C(k) = 2.._,N M (k) as number of points in Cluster k

Take same form H, =2>__ N >, _,“ M (k) &(k) as for central
clustering

¢(k) determined to minimize F,, (P,) = < Hpywe- T So(Po) >,
where integrals can be easily done

And now linear (in M (k)) H, and quadratic H,. are different
Again <M (k)> = exp(-e{k)/T) /[ 2. exp(-€{k)/T)

Fut
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General Features of DA

Deterministic Annealing DA is related to Variational
Inference or Variational Bayes methods

In many problems, decreasing temperature is classic
multiscale — finer resolution (VT is “just” distance scale)
— We have factors like (X(i)- Y(k))? /T

In clustering, one then looks at second derivative matrix
of F (P,) wrt € and as temperature is lowered this
develops negative eigenvalue corresponding to instability
— Or have multiple clusters at each center and perturb

This is a phase transition and one splits cluster into two
and continues EM iteration

One can start with just one cluster
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e Start at T= “c0” with 1
Cluster

 Decrease T, Clusters
emerge at instabilities







m2 (23193)

m4 (12388)
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Phase Transitions in Physical
Optimization Approach

¥ clusiets
Rose, K., Gurewitz, E., and Fox, G. C.
““Statistical mechanics and phase transitions
in clustering," Physical Review Letters,

65(8):945-948, August 1990.
log €
Objeclive _ _ '
Funclion My #5 most cited article (387 cites)

I

<~ Temperalure, T-0
Resoiudion fine

@ The clustering problem - like any good
physical system - exhibits phase transitions
as one iowers the temperature

PhysComp92X - 116192 ges@npac. syr.edu  hitp: liwww.npac.syr.edu




DA-PWC EM Steps (E is red, M Black)
k runs over clusters; i,j points
1) A(k) =-0.5%,_ N> N8(i, j) <M{k)> <M (k)> / <C(K)>2
2) Bi(k) = 2., (i, j) <Mi(k)> / <C(k)>
3) &(k) = (B;(k) + A(k))
4) <Mk)> = p(k) exp( -g{k)/T )/ 2._," p(k) exp(-{k)/T)

5) C(k) = >. N <M.(k)> Steps 1 global sum (reduction)
= : Step 1, 2, 5 local sum if <M,(k)>
6) p(k) =C(k) /N broadcast

* Loop to converge variables; decrease T from oo;
split centers by halving p(k)
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Trimmed Clustering

Clustering with position-specific constraints on variance: Applying
redescending M-estimators to label-free LC-MS data analysis (Rudolf
Frihwirth, D R Mani and Saumyadipta Pyne) BMC

Bioinformatics 2011, 12:358

Hrce = 20" 221" M(K) F(i k)

— f(i,k) = (X(7) - Y(k))*/20(k)?

— f(i,0)=c?/2

k>0
k=0

The 0’th cluster captures (at zero temperature) all points outside

clusters (background)

Clusters are trimmed

(X(i) - Y(k))?/20(k)* < c* / 2
Another case when H, is
same as target Hamiltonian
Proteomics Mass Spectrometry
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High Performance Dimension

Reduction and Visualization
* Need is pervasive

— Large and high dimensional data are everywhere: biology, physics,
Internet, ...

— Visualization can help data analysis
e Visualization of large datasets with high performance
— Map high-dimensional data into low dimensions (2D or 3D).

— Need Parallel programming for processing large data sets

— Developing high performance dimension reduction algorithms:
e MDS(Multi-dimensional Scaling)
 GTM(Generative Topographic Mapping)
* DA-MDS(Deterministic Annealing MDS)
 DA-GTM(Deterministic Annealing GTM)

— Interactive visualization tool PlotViz
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Multidimensional Scaling MDS

Map points in high dimension to lower dimensions

Many such dimension reduction algorithms (PCA Principal component
analysis easiest); simplest but perhaps best at times is MDS

Minimize Stress
o(X) = Zi;_;" weight(i,j) (6(i, j) - d(X;, X;))*

o(i, j) are input dissimilarities and d(X;, X;) the Euclidean distance squared in
embedding space (3D usually)

SMACOF or Scaling by minimizing a complicated function is clever steepest
descent (expectation maximization EM) algorithm

Computational complexity goes like N2 . Reduced Dimension
We describe Deterministic annealed version of it which is much better
Could just view as non linear y? problem (Tapia et al. Rice)

— Slower but more general

All parallelize with high efficiency
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Implementation of MDS

Hyipos = Zic j-1" weight(ij) (6(i, j) - d(X(i) X())))?
Where 0(j, j) are observed dissimilarities and we want to
represent as Euclidean distance between points X(/) and X(j)

Hyips IS quartic or involves square roots, so we need the idea
of an approximate Hamiltonian H,

One tractable integral form for H, was linear Hamiltonians
Another is Gaussian H, = X" (X(i) - p(i))? / 2

Where X(i) are vectors to be determined as in formula for
Multidimensional scaling

The E step is minimize

X =" weight(i,j) (8(/, j) — constant.T - (u(i) - u(j))*)?
with solution u(i)=0atlarge T

Points pop out from origin as Temperature lowered
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Pairwise Clustering and MDS

are O(N?) Problems
100,000 sequences takes a few days on 768 cores

32 nodes Windows Cluster Tempest

Could just run 440K on 4.47 larger machine but lets
try to be “cleverer” and use hierarchical methods

Start with 100K sample run fully
Divide into “megaregions” using 3D projection

Interpolate full sample into megaregions and
analyze latter separately

See http://salsahpc.org/millionseq/16SrRNA_index.html
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Use Barnes Hut OctTree
originally developed to
make O(N?) astrophysics
O(NlogN)

DS_interpolation\2$_40_testresults pviz

-




OctTree for 100K
sample of Fungi

We use OctTree
for logarithmic
interpolation




440K Interpolated

m2 (111229)

m 6 (42174)
m 8 (73885)
m @ (38443)




A large cluster in Region 0

m2 (476)
m 4 (885)

m 8 (25787)




m2(673)

=4 (2089)

a7 (2833)
m 8 (906)

m 10 (852)
m 11 (1426)
m 12 (587)

m 14 (2219)
m 15 (5496)
m 16 (8557)
m 17 (3394)
m 18 (1337)

m 20 (1184)
CPARCARY))
m 22 (2767)
m 23 (1926)
m 24 (2855)
m 25 (963)

26 Clusters in Region 4




13 Clusters in Region 6

m 2 (2246)

(159
m 10 (210)
m11(1797)
m12(179)
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* The octopi are
globular clusters
distorted by length
dependence of
dissimilarity measure

* Sequences are 200 to
500 base pairs long

* We restarted project
using local (SWG) not

global (NW)
alignment
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* Note mapped (Euclidean 3D shown as red)_and -
abstract dissimilarity (blue) are very similar
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" Quality of DA versus EM MDS

Normalized
STRESS -
0.08 - 0.06 - DA-exp25
. . DA-En100
Variation s
— in different
0.0 runs
0.04-

Normalized STRESS

Map to 2D 100K Metagenomics Map to 3D
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SRR TSR
Run Time of DA versus EM MDS

Run time
secCs
25000 -
14000 - DA-e5 DA-e5
DA-e56 DA-e586
DA-ef DA-e8
12000 -
DA-15 20000- DA-I5
DA-I56 DA-I56
10000 - DA-18 I
EM-5
I — 15000 - EM-8
O
8000 - 4
6000 - S 10000-
4000 -
5000 -
2000 -
0- 0-
I 1
18sRNA_100K_2D 18sRNA_100k_3D

Map to 2D 100K Metagenomics Map to 3D
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GTM with DA (DA-GTM)

@ ] | |
|  J | f
Mapto Grid | o o v o o A A
(like SOM) E St e 4
ey @ Klatent
Latent Space (L dimension) Data Space (D dimension) @ roints

N data points
e GTM is an algorithm for dimension reduction

— Find optimal K latent variables in Latent Space
— fis a non-linear mapping function
— Traditional algorithm use EM for model fitting

* DA optimization can improve the fitting process

. Future _
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Advantages of GTM

 Computational complexity is O(KN), where
— N is the number of data points

— Kis the number of latent variables or clusters. K << N
* Efficient, compared with MDS which is O(N?)

* Produce more separable map (right) than PCA (left)

Oil flow data
1000 points
12 Dimensions
3 Clusters




Free Energy for DA-GTM

* Free Energy

N
F=D-TH =-T)» InZ,

— D : expected distortion
— H : Shannon entropy
— T : computational temperature
— Z_ : partitioning function
e Partition Function for GTM

- z::exp ( ) dpr = — log (/\/’(:13;, yk))
i oo SAMHPC




DA-GTM vs. EM-GTM

EM-GTM DA-GTM

Optimization Maximize log-likelihood L Minimize free energy F

1

N | K L |
Objective ;IH{K;p(wn|yk>} —T21n{< ) prnk‘/kT}

) k=1
Function

WhenT=1, L =-F.

Less sensitive to an initial condition
Find global optimum

Require more computational time
Smaller standard deviation

'. Future
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Very sensitive

Trapped in local optima
Faster

Large deviation

Pros & Cons
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DA-GTM Result

2000 -

1500 -

Log-Likelihood (lih)

1000 -

500 -

N/A > ! ° (1T = 4.64)
Starting Temperature c™ ™ M HPC

Ty

©

EM

Adaptive
Exp-A (o = 0.95)
Exp-B (o =0.99)
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Data Mining PrOJects using GTM

. 0: Genes (311568)
. 1: Adenocarcinoma (166)
2: Ataxia (140)
- 3: Carcinoma (130)
. 4: Hepatitis (1189)
5: Hypertension (162)
6: Infection (9762)
B 7: Leukemia (3632) ol ¥
.3 Lymphoma &6 é’q VY
. O MSTOTaTA rophv(:{ﬂ% e s
10: Qbesity (474)
11: S§rcoma (101)
.12 Sel |zophreme.(?

D

PubChem data with CTD visualization
About 930,000 chemical compounds are
visualized in a 3D space, annotated by the
related genes in Comparative
Toxicogenomics Database (CTD)

1. (54)

14:(3)

16 (1)

17:43)

18 (4

203)

3

4:(2)

5.(2)

6:(1) RN
| & s

(1)

10

12 (1)

e

15:(2)

. 18: (1)
.211: (4

21: (1)

0: (100000)

[l 0: 0 (226454)
. 1: ABCB1 (246)
. 2: CHRNB2 (570)
|l 3: ORD2 (3401)
[ 4:EsR1 (780)
5:F2(2003)

e 4 \
e X
13 (1) '.n s \

Visualizing 215

solvents by GTM-
_ Interpolation

215 solvents

(colored and

labeled) are

1.2 Bhanediamine” ‘{\J" em bed d ed Wlt h

~ Anilne

\:\ Methanol

L4

%

100,000 chemical
compounds (colored

— M.L-w in grey) in PubChem

database

Chemical compounds
reported in literatures
Visualized 234,000
chemical compounds
which may be related
with a set of 5 genes of
interest (ABCB1,
CHRNB2, DRD2, ESR1,
and F2) based on the
taset collected from
jou lif€katures

HPC
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Probabilistic Latent Semantic Analysis
(PLSA)

* Topic model (or latent model)
— Assume generative K topics (document generator)
— Each document is a mixture of K topics
— The original proposal used EM for model fitting

Doc 1 Doc 2 Doc N
__..5;- 5. ortal.tuturegrid.or ﬁ M HPC




DA-Mixture Models

 Mixture models take general form
H=-%_"2,_.*M (k) In L(n|k)
2" M (k) =1for eachn
n runs over things being decomposed (documents in this

case)
k runs over component things— Grid points for GTM, Gaussians

for Gaussian mixtures, topics for PLSA
* Anneal on “spins” M, (k) so H is linear and do not need
another Hamiltonian as H = H,

* Note L(n]|k) is function of “interesting” parameters and
these are found as in non annealed case by a separate
optimization in the M step

. Future _
sy Grid https://portal.futuregrid.org HPC




Optimization

GTM

PLSA

Objective
Functions

Pros & Cons

EM vs. DA-{GTM, PLS

A}

EM

DA

Maximize log-likelihood L Minimize free energy F

im{;ép(wnm)} —Tzln{( ) meyk%}

S 3 i) T Y (i )
n=1 k=1

n=1 k=1

Note: WhenT=1, L =-F.

This implies EM can be treated as a special case in DA

= Very sensitive = Less sensitive to an initial condition
*" Trapped in local optima * Find global optimum

= Faster = Require more computational time
= Large deviation . ™ Small deviation

-
o =

-\ oW\ [HPC



DA-PLSA Features

DA is good at both of the following:
— To improve model fitting quality compared to EM

— To avoid over-fitting and hence increase predicting
power (generalization)
* Find better relaxed model than EM by stopping T > 1

* Note Tempered-EM, proposed by Hofmann (the original
author of PLSA) is similar to DA but annealing is done in
reversed way

e LDA uses prior distribution to get effects similar to
annealed smoothing

. Future _
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An example of DA-PLSA

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
percent stock soviet bush percent
million market gorbachev dukakis computer
year index party percent aids
sales million i i year
billion percent president jackson new
new stocks union campaign drug
company trading gorbachevs poll virus
last shares government president futures
corp new new new people
share exchange news israel two

Top 10 popular words of the AP news dataset for 30 topics.
Processed by DA-PLSI and showing only 5 topics among 30 topics

. Future _
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Annealing in DA-PLSA

Changes of Log-Likelihood

Training Set Improved fitting
quality of training set
during annealing

-1000 -
é \\\___________T?th_P_er_p_lefi_ty_ Annealing
$ progresses from
21500 - hlgh temp to /OW
temp
Proposed early-stop
condition

Testing Set er s

Over-fitting at Temp=1
100 50 10 5 1I

Temperature
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Word Index

Predicting Power in DA-PLSA

AP Word Probabilities (100 topics for 10473 words)

=E5 EE —;_3
1000 & E
-5
2000F © @
i ! 2 ! =10
3000F SS = iE R
4000 - B
5000 |- :
6000 - -
— -25
7000} 3
go00|E====—d:= = =i = [l
sov0f= A= e o
3 : - = =3 =8

optimized stop

(Temp = 49.98) ﬂf"éﬁ.’,‘;}"

asa~

https://portal.futuregrid.org

1000

2000

3000

4000

5000

6000

Word Index

7000

8000

9000

10000

Over-fitting (most word probabilities are zero)

atT=1

SA . SA »c



Log-likelihood
| |

Training & Testing in DA-PLSA |

-700 Method
== DA-Train
== DA-Test
720 = EM-Train
== EM-Test
740
760
780
800
L
-820
1 5

10 50
Latent space dimensions

100

e Here terminate on

Dosirain maximum of testing
It i set
gk 4 * DA outperform EM

i * Improvements in
training set
matched by
improvement in

DA-Test testing results

-~ EM-Train

S00

EM-Test

SA SA »c



Log-likelihood

Training &'4'?—eslt—Tn

-500-
-1000
-1500-
-2000
Method
—| DA-Train
-2500- || 4| DA-Test
~#-| EM-Train
—-| EM-Teat
-3000-
|
1

DA-Train

- 10 50 100 500

Latent space dimensions

g in DA-PLSA I

* Here terminate
on maximum of
training set

* Improvements in
training set NOT
matched by
improvement in
testing results

SA SA i+



DA-PLSA with DA-GTM

m 93 (99)

m 424 (194)
m 435 (174)
m 445 (146)
B - 492 (130)
DA-PLSA
[]
DA-GTM




AP Data Top Topic Words

* |n the previous picture, we found among 500

topics:
Topic 331 Topic 435 Topic 424 Topic 492 Topic 445 Topic 406
lately lately mandate mandate mandate plunging
oferrell oferrell kuwaits kuwaits lately referred
mandate ACK cardboard cardboard ACK informal
ACK fcc commuter commuter cardboard Anticommu.
fcc mandate ACK lately fcc origin
cardboard cardboard fcc ACK commuter details
commuter exam lately exam oferrell relieve
exam commuter exam fcc exam psychologist
kuwaits fabrics fabrics oferrell kuwaits lately
fabrics corroon oferrell fabrics fabrics thatcher
ACK : acknowledges
Anticommu. : anticommunist "":FUtgfcf https://portal.futuregrid.org M /M
: HPC
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m4 (135

m |2 (105)

m 15(92)
m 20 (115)




AP Data Top Topic Words

e With 20 topics

#3 #4 H7 #9 #12 #13 #15 #20
marriage mandate mandate lately lately mandate mandate oferrell
kuwaits kuwaits resolve informal overdue fcc commuter van
algerias cardboard fabrics PSY ACK fabrics kuwaits fcc

commuter | commuter kuwaits referred fcc ACK cardboard | attorneys
exam fabrics cardboard oferrell oferrell campbell fcc Anticomm
cardboard minnick fcc ACK corroon cardboard | turbulence lately
accuse glow commuter | Anitcomm resolve solis fabrics formation
exceed theyd oferrell clearly van sikhs exam ACK

ACK : acknowledges
Anticomm : anticommunist
PSY : psychologist
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What was/can be done where?

Dissimilarity Computation (largest time)
— Done using Twister on HPC
— Have running on Azure and Dryad
— Used Tempest (24 cores per node, 32 nodes) with MPI as well (MPI.NET
failed(!), Twister didn’t)

Full MDS

— Done using MPIl on Tempest
— Have running well using Twister on HPC clusters and Azure
Pairwise Clustering

— Done using MPIl on Tempest

— Probably need to change algorithm to get good efficiency on cloud but HPC
parallel efficiency high

Interpolation (smallest time)

— Done using Twister on HPC

— Running on Azure :'-';\Fugg:-‘; https://portal.futuregrid.org M M
35~ HPC
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Pub/Sub Broker Network

!

@ Map Worker

1 ® Reduce Worker

Map(Key, Value)

uses short running
processes
communicating
via disk and
tracking
processes

uses short running
processes
communicating via
pipes, disk or
shared memory
between cores

long running
processing with
asynchronous
distributed
Rendezvous
synchronization

running processes
with Rendezvous
for message
exchange/
synchronization

Different synchronization and interconjnfumicati
mechanisms used by the parallel rutugf'%

MR User
Driver Program n MRDeamon
t Data Read/Write
- t Communication
Data Split o File System J
\
h A
TItt 111
Disk HTTP Pipes [_Pub-Sub Bus MPI Static
data
[ DiskHTTP | [ Pipes | [ Pub-SubBus | | MPI
h
| DiskHTTP | [ Pipes | [ Pub-SubBus | | MPI
A A A A A A A A
| DiskHTTP | [ Pipes | [ Pub-SubBus | | MPI 6 flow
Yahoo Hadoop Microsoft DRYAD MapReduce++ is MPl is long

ﬁttps ://portal.futuregrid.org

Configure()

& Twister &

Streaming based communication

Intermediate results are directly
transferred from the map tasks to the
reduce tasks — eliminates local files

Cacheable map/reduce tasks
* Static data remains in memory
Combine phase to combine reductions

User Program is the composer of
MapReduce computations

Extends the MapReduce model to
iterative computations

Iterate

v

uce (Key, List<Value>)

N

Combine (Key, List<Value>)

v
Close() -
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Expectation Maximization and
Iterative MapReduce

* Clustering and Multidimensional Scaling are both EM
(expectation maximization) using deterministic
annealing for improved performance

 EM tends to be good for clouds and Iterative
MapReduce

— Quite complicated computations (so compute largish
compared to communicate)

— Communication is Reduction operations (global sums in our
case)

— See also Latent Dirichlet Allocation and related Information
Retrieval algorithms similar EM structure

. Future _
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May Need New Algorithms

DA-PWC (Deterministically Annealed Pairwise Clustering) splits
clusters automatically as temperature lowers and reveals clusters

of size O(VT)

Two approaches to splitting
1. Look at correlation matrix and see when becomes singular which is a
separate parallel step

2. Formulate problem with multiple centers for each cluster and perturb
ever so often spitting centers into 2 groups; unstable clusters separate

 Current MPI code uses first method which will run on Twister as
matrix singularity analysis is the usual “power eigenvalue
method” (as is page rank)
— However not super good compute/communicate ratio
 Experiment with second method which “just” EM with better
compute/communicate ratio (simpler code as well)
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Next Steps
Finalize MPI and Twister versions of Deterministically
Annealed Expectation Maximization for
— Vector Clustering
— Vector Clustering with trimmed clusters
— Pairwise non vector Clustering
— MDS SMACOF

Extend O(NlogN) Barnes Hut methods to all codes

Allow missing distances in MDS (Blast gives this) and allow
arbitrary weightings (Sammon’s method)

— Have done for y? approach to MDS
Explore DA-PLSA as alternative to LDA
Exploit better Twister and Twister4Azure runtimes
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