Visualizing science using VOSviewer

Ludo Waltman

Centre for Science and Technology Studies (CWTS), Leiden University

Visual Insights Talk Series Indiana University Bloomington January 29, 2018

Outline

- Introduction to VOSviewer
- Application
- Lessons learned

My research into bibliometric visualization and the development of VOSviewer is joint work with CWTS colleague Nees Jan van Eck

Introduction to VOSviewer

Bibliometric networks

Co-authorship networks

Citation networks

Bibliographic coupling networks

Co-citation networks

Co-occurrence networks

Software tools for bibliometric network analysis

• General network analysis tools:

- Gephi (<u>http://gephi.org</u>)
- Pajek (<u>http://pajek.imfm.si</u>)

• **Bibliometric network analysis tools:**

- BibExcel (<u>http://www8.umu.se/inforsk/Bibexcel/</u>)
- CiteSpace (<u>http://cluster.cis.drexel.edu/~cchen/citespace/</u>)
- Science of Science (Sci²) Tool (<u>https://sci2.cns.iu.edu</u>)
- VOSviewer (<u>www.vosviewer.com</u>)
- Tools for analyzing citation networks:
 - HistCite (www.histcite.com)
 - CitNetExplorer (<u>www.citnetexplorer.nl</u>)

VOSviewer

VOSviewer

- Visualization of (bibliometric) networks
- Analytics Construction of bibliometric networks based on popular data cources (o.g. Wob of VOSviewer version 1.6.6 Science, Sco
- can be freely downloaded from Advanced vi www.vosviewer.com
 - VOS layout te
 - Smart labeling algorithm
 - Overlay visualization
 - Density visualization ('heat map')
- Text mining functionality
- Easy to use, but limited possibilities for in-depth analysis

rossref

zotero

💥 BibSonomy

Clarivate

20

IEEE Xplore®

VOSviewer users

- Researchers
- Research institutions
- Research funders
- Scientific publishers

Number of VOSviewer publications per year

Demonstration

Application

Micro-level scientific fields

Activity of Indiana University Bloomington

Activity of Leiden University

Scientometrics / science of science

Activity of Indiana University Bloomington and Leiden University

Activity of Indiana University Bloomington

Activity of Leiden University

Lessons learned

Acknowledge different use cases of visualizations

We tend to think about visualizations as a useful tool for getting an understanding of large data sets, but visualizations also serve other purposes

Adjust visualizations to mode of presentation

Co-authorship network (static visualization)

Co-authorship network (interactive visualization)

Balance technical sophistication against methodological transparency

University co-authorship network based on full counting

University co-authorship network based on fractional counting

Source: Perianes-Rodriguez, Waltman, & Van Eck (2016)

Test sensitivity of visualizations to methodological choices; handle these choices pragmatically

Co-authorship network (24 clusters)

Co-authorship network (10 clusters)

Be aware that visualizations give a simplified representation of your data

Co-citation network of scientific journals

Zooming in on *Scientometrics* and its environment

Combine visualizations with other evidence

2015. Node size represents total number of links for a country. Link width represents the number of researchers affiliated with a pair of countries (either at the same time or sequentially). The colors denote community clusters (based on VOSviewer's clustering technique). (n=15.931,221)

Circulation networks that map the number and flow of researchers reveal the importance of the United States, United Kingdom, France, Canada and Germany as prominent nodes in the global scientific network (see Supplementary Figure S2). Isolation of these countries would have dramatic consequences. Although the United Kingdom is not particularly central to researcher migration in the European Union, it serves a crucial function in providing a bridge for European scientists to other areas of the world (see Supplementary Figure S2). Isolationist policies in the United Kingdom could deconstruct this network, redirecting scholars through other countries.

5 OCTOBER 2017 | VOL 550 | NATURE | 29

Measuring the global in or emerge of researchers will help to assess the effects of political actions on science.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserve

Tab. S1. Betweenness and closeness of countries for the world map

Country	Closeness	Rank	Betweenness	Rank
USA	0.98484848	1	0.05158627	1
UNITED KINGDOM	0.94660194	2	0.03857314	2
FRANCE	0.9375	3	0.03718456	3
CANADA	0.91121495	4	0.03130858	4
GERMANY	0.91121495	5	0.02838484	6
SWITZERLAND	0.89041096	6	0.02389162	8
ITALY	0.88636364	7	0.03050356	5
NETHERLANDS	0.88636364	8	0.02430296	7
AUSTRALIA	0.87053571	9	0.0216997	9
BELGIUM	0.84782609	10	0.01914646	11
SPAIN	0.83333333	11	0.02077365	10

Challenges for bibliometric visualization

- How to better link interactive visualizations to the underlying bibliometric data?
- How to better handle large bibliometric data sets?
- How to improve visualization literacy in bibliometrics?

Do it yourself!

Welcome to VOSviewer

VOSviewer is a software tool for constructing and visualizing bibliometric networks. These networks may for instance include journals, researchers, or individual publications, and they can be constructed based on citation, bibliographic coupling, co-citation, or co-authorship relations. VOSviewer also offers text mining functionality that can be used to construct and visualize co-occurrence networks of important terms extracted from a body of scientific literature.

VOSviewer version 1.6.6

VOSviewer version 1.6.6 was released on October 23, 2017. Some of the new features and improvements are listed below:

- Support for Crossref data.
 Functionality has been added for creating co-authorship, citation, and term co-occurrence maps based on Crossref data. Data can be downloaded directly through the Crossref API. More information is available here.
- Improved visualizations.
 Improvements have been made to

Click the button below to launch VOSviewer directly from this web page. This requires a system with Java support.

www.vosviewer.com

- Freely available VOSviewer software
- Examples of VOSviewer visualizations
- Documentation and tutorials
- Questions and answers
- List of publications in which VOSviewer is used

Further reading

Synthesis Lectures on Information CONCEPTS, RETRIEVAL, AND SERVICES

Gary Marchionini, Series Editor

Chaomei Chen

Frontiers

Second Edition

Mapping Scientific

The Quest for Knowledge Visualization

D Springer

of Science

D Springer

Atlas of Knowledge Anyone Can Map

24

Thank you for your attention!