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Disclaimer:

We’'re just scratching the surface.
There are so many cool studies that
| cannot cover herel




Visit;

http://go0.gl/opEfTp
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Network community analysis
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Networks = [he maps of
complex systems




Network community analysis




What IS a

network community”?




ENOTIONS NAPPED
BY NEW GEOGRAPHY

Charts Seek to Poriray the
Psychological Currents of -
Human Relationships.

New York Times
Apnl 3, 1933

Moreno’s “sociogram”




Twitter’s Divided Politics

Political Twitter traffic reveals that users are
polarized along party lines.*

Researchers at Indiana University
analyzed 250,000 Twitter messages on
political topics exchanged by 45,000
people during the 2010 mid-term
congressional elections. This chart of
‘retweets’ —in which one user forwards
another’s message—shows that, though
there were more left-leaning users,
right-leaning users were more densely
connected to one another. (Each dot is a
Twitter user, and the lines show retweets.)
Even so, as the chart illustrates, lines of
communication do sometimes reach
across the political divide.

The most popular hashtags (short

codes signaling the message’'s content),
shown by number of tweets. .
Researchers found that users on the left
and right use each other’s hashtags.

120,000
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100,000
Right-leaning

80,000

60,000

- II
o NN NN ll

% Y, %,

Hashtags: toot, top conservatives on Twitter; pd, progressives 2.0; sgp, smart girl poltics; tiot, top libertasians on Twitter,
*Data show ‘retweets” of other users’ messages. Politcal leaning designations are based on algorthmically-determined communities of users which correlate with political aMibation,
Source: Center for Complex Networks and Systems Research, Indana University
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Cohesiveness

Separation




Group cohesiveness

(Moreno & Jennigs 1938, Festinger 1950, Gross & Martin 1952)

Graph partitioning

(Kernighan & Lin 1970)




Why do we care?



Original motivation:

Computation
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How tO minimize the
number of wires?
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How to minimize the
communication between
computers?




Circuits, Communication
between softwares ~
Networks

Functional modules ~
Communities




Correspondence to

functional, structural
units
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Belgian communication network

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. (2008)



Belgian communication network

French

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. (2008)



Belgian communication network

Social structure ~
Communities

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. (2008)
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Protein complexes

. communities
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R. Guimera & L. A. N. Amaral, Nature (2005)



UDP-N-acetyl-D-glucosamine

Uracil
- Glycan biosynthesis & metabolism e
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Metabolic pathways ~ communities

R. Guimera & L. A. N. Amaral, Nature (2005)
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Social circles,

Social Networks .
communities

Protein complexes,

Biological networks .
functional modules

Citation networks - Disciplines,
scientific communities




FINding communities:
A nice way to

overview
the whole system
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Remaining
hierarchy

Y.-Y. Ahn, J. P. Bagrow, S. Lehmann, Nature (2010)



Network community analysis




How to

define
communities”?




Cohesiveness,
Separation

or both

A nice review:
J. Yang and J. Leskovec, Defining and Evaluating
Network Communities based on Ground-truth,
ICDM 2012




“Cohesiveness”

Cligue percolation
Link communities




“Separation”

Girvan-Newman algorithm
Graph cuts
Spectral clustering




Cohesiveness + Separation




Modularity

A= 5

5(6@, Cj)

4 of links within
# of expected links

M. Girvan and M. E. J. Newman, PNAS (2002)



How to detect

communities?




We should be able to

1. evaluate a community structure
2. explore possible structures effectively




Wait, can we just

check every possible
configurations?




Bell Number: # of
partitions of a set of size n.




Bell Number: # of
partitions of a set of size n.

B3 =5




Bell Number: # of
partitions of a set of size n.

B3 =5

Bioo =7
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Impossible to
enumerate

Fundamental problem of
community detection




1. evaluate a community structure
- Modularity, cligues, map equation,

partition density, ...

2. explore possible structures
effectively

- Many heuiristics, Divisive &
agglomerative clustering, Monte-carlo, ...




Modularity-based

methods




Divisive VsS.

Agglomerative













Girvan-Newman

algorithm

M. Newman, M. Girvan, PNAS (2002)






500 cuts













| ouvain method

2ndpass 26 24

—> 2B

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre JSTAT (2008).



Various optimization
techniques

A. Clauset, M. Newman, C. Moore: Greedy
optimization

R. Guimera, L. A. N. Amaral: Extremal
optimization

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E.
Lefebvre: Hierarchical aggregation

Any optimization technique can be used.




“Cliques”



What is a ‘perfect
community’?

A clique!




Then, how about

finding quasi-cliques?




Clique Percolation Method

¢ “Rolling” a clique to find a quasi-clique.

e Quasi-cligues are communities.

G. Palla, I. Derenyi, |. Farkas, T. Vicsek, Nature (2005).
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Clique Percolation Method

¢ “Rolling” a clique to find a quasi-clique.

e Quasi-cligues are communities.
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Clique Percolation Method

¢ “Rolling” a clique to find a quasi-clique.

e Quasi-cligues are communities.

G. Palla, I. Derenyi, |. Farkas, T. Vicsek, Nature (2005).



Original Graph

Bi-partite graph

Step 1: Find all K-Cliques (K = 4)
Clique Node




Step 2: Combine adjacent cliques (with K-1 = 3 shared nodes)

Step 1: Find all K-Cliques (K = 4) Bi-partite graph
Clique Node

After merging adjacent cliques




Step 2: Combine adjacent cliques (with K-1 = 3 shared nodes)
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“Information”




If there Is a random
walker on the network, It

will be trapped inside
each community.




Demo


http://www.mapequation.org/apps/MapDemo.html

“Overlap”



Physicists

\ Department of

Biological Physics

Scientific
community

G. Palla, |. Derényi, |. Farkas & T. Vicsek, Nature (2005)












Family

buildings in same
neighborhood

University

T

joint appointment

It Is impossible to obtain a single
dendrogram.




Simple local structure




Complex global structure
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What is this?




What the xxxx




Word association network: Network of “commonly
associated English words”
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Link communities
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Nodes: multiple membership

Links: unique membership




Similarity between links

|

Hierarchical Clustering



















Partition Density

Community ¢ has m. edges and n.induced nodes




Partition Density

Community ¢ has m,. edges and n.induced nodes




Partition Density

Community ¢ has m,. edges and n.induced nodes

=9

i =

M



Partition Density

Community ¢ has m. edges and n.induced nodes
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Partition Density

Community ¢ has m. edges and n.induced nodes




Partition Density

Community ¢ has m,. edges and n.induced nodes

Y __m
Ne(ne—1)
2
A A single link is maximally dense




Partition Density

Community ¢ has m. edges and n.induced nodes




Partition Density
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Partition Density
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The first plant (genomic scale) interactome
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The first plant (genomic scale) interactome

- Al-1,,,,, protein-protein interaction

Arabidopsis Interactome Mapping Consortium, Science, 2011



Statistical inference




Given a graph G, and a generative
model with parameters §

Likelihood




Stochastic Block Model




Stochastic Block Model




Stochastic Block Model




Stochastic Block Model




So, what should |

use?




1. No silver bullet.

2. Hard to know beforehand.




Accuracy



Accuracy

e |t is very hard to compare performance of methods on
a fair ground because each method is usually very
good at finding what it is looking for.
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®* Most studies use ‘benchmark networks’ to evaluate

the performance.




Accuracy

e |t is very hard to compare performance of methods on
a fair ground because each method is usually very
good at finding what it is looking for.

®* Most studies use ‘benchmark networks’ to evaluate
the performance.

¢ Infomap and Louvain method are the best in these
benchmarks.




Accuracy

It is very hard to compare performance of methods on
a fair ground because each method is usually very
good at finding what it is looking for.

Most studies use ‘benchmark networks’ to evaluate
the performance.

Infomap and Louvain method are the best in these

benchmarks.
However, the performance depends on what kinds of
community structure the benchmark networks

assume.




Accuracy

It is very hard to compare performance of methods on
a fair ground because each method is usually very
good at finding what it is looking for.

Most studies use ‘benchmark networks’ to evaluate
the performance.

Infomap and Louvain method are the best in these
benchmarks.

However, the performance depends on what kinds of
community structure the benchmark networks
assume.

Good performance in the benchmarks does not
guarantee good performance in real cases.
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Computational complexity

Some methods are much faster than
others.

O(exp(n)) vs. O(m~"2 n) vs. O(n log n)
Usually a good choice for huge (> 1m ~ 1b)
networks: Louvain method (~O(n log n))
Current version of infomap also uses
louvain-type multilevel optimization and
very fast.

Link clustering can also handle large

graphs (but it becomes slow with large
hubs).
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Overlap

¢ |f you expect pervasive overlap of
communities, you should use
overlapping community detection
methods.

Link clustering and clique percolation
methods are common choices.

These methods can detect highly
overlapping communities. There are
many other methods but most methods
only deal with ‘fuzzy’ overlaps.
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Resolution limit

e Modularity has a
resolution limit that
depends on the system
sSize.

If a community is
smaller than this limit,
modularity-based
optimization cannot find
the communities, even
though they are cliques.
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My heuristic

| don’t care too much and | just want to get rough
clusters in my network — Infomap or Louvain

| expect multiple community membership for many
nodes — Link clustering (Clique Percolation)

My network is HUGE and doesn’t have super-large
hubs — Louvain (Infomap, link clustering)

My network is HUGE and has lots of super-hubs —
Louvain (Infomap)

I’d like to see the detailed hierarchical structure —
Link clustering




THANK YOU!

Qyy
VWwann@indiana.edu



mailto:yyahn@indiana.edu

