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Schedule and Tasks 
by Kevin W. Boyack 
 
The proposed schedule and tasks from the original proposal have been clarified and broken into 
subtasks as shown in Figure 1. The task list shown here will be used to document progress on 
this SBIR Phase I project. 
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1. Generate corpus
2. Generating similarities
  a1. Text pre‐processing
  a2. Create/procure text algorithms
  a3. Calculate text similarities
  b1. Citation pre‐processing
  b2. Create/procure citation algorithms
  b3. Calculate citation similarities
  c1. Calculate hybrid similarities
3. Clustering using DrL
  a1. Cluster MeSH co‐occurrence sims
  a2. Cluster LSA sims
  a3. Cluster topic model sims
  a4. Cluster SOM sims
  a5. Cluster Collexis sims
  b1. Cluster co‐citation analysis sims
  b2. Cluster bib coupling sims
  b3. Cluster direct linkage sims
  c1. Cluster link/MeSH co‐citation hybrid
  c2. Cluster other hybrid sims?
4. Prepare evaluation
  a1. Cohesiveness calculations
5. Card‐sorting study
  a1. Identify key researchers for study
  a2. identify sim types for researchers
  a3. Generate cards for researchers
  a4. Email cards/instructions to researchers
  a5. Collate results
6. Evaluation
7. Publication

Monthly reports (IU input)
Monthly reports (STS submit)

SciTech Strategies
Indiana University and subcontractors (Skupin, Collexis)
Both  

 
Figure 1. Tasks and proposed schedule for this SBIR Phase 1 project. 

 



It was decided that all work will be documented in real time and at a level of detail that supports 
the exact replication of work. All subcontractors will have access to this documentation as well 
as to intermediate data results. While the Scopus data cannot be made available, all MEDLINE 
based derivative data will be made freely available from a web page linked from 
http://sci.slis.indiana.edu/sts, see Appendix A. Ultimately, this will facilitate easy replication as 
well as comparisons with algorithms that might be developed in the future. We will work with 
TREC (http://trec.nist.gov) and KDD (http://www.sigkdd.org) organizers to ensure that the 
MEDLINE portion of this dataset is known and available for algorithm comparisons.  
 
Task 1: Generation of a Corpus of Medical Documents 
by Kevin W. Boyack 
 
The ultimate purpose of this project is to provide a highly accurate interactive map of medical 
research that can be easily used by both technical and non-technical users. Most current science 
maps in use today are small in scale and have not been validated. Accurate decisions require high 
quality and high coverage data, well defined and tested data analysis workflows, and a resulting 
representation that matches the visual perception and cognitive processing capabilities of human 
users. Phase I of this project has been designed to compare and determine the relative accuracies 
of maps of medical research based on commonly used text-based and citation-based similarity 
measures at a scale of over two million documents. 
 
In order to properly compare text-based and citation-based techniques, a large corpus for which 
both text and citations are available is required. Task 1 of this project has produced such a 
corpus. SciTech Strategies, Inc. (STS) has a license to use raw data from the Elsevier citation 
database known as Scopus, a database that purports to index all of MEDLINE. In addition, 
Indiana University maintains a copy of the MEDLINE database in its Scholarly Database (SDB, 
online at http://sdb.slis.indiana.edu and led by Nianli Ma). Thus, for purposes of this project, the 
participants have access to the necessary data to generate the large corpus necessary for this 
work. This corpus was generated using the following process. 
 
1) Records from the SDB version of MEDLINE were matched to Scopus records maintained in a 
database at STS to generate a one-to-one matching between records. The purpose of this 
matching step is to identify those records (articles, etc.) for which MeSH terms, titles, abstracts, 
and references are available. This matching was carried out on a segment of both databases using 
publications from 2003 to 2008 to ensure that at least 2 million records would be matched. The 
steps used in this matching process, along with the results, are detailed here. 
 

a) Over the past couple of years, STS has maintained a matched list of MEDLINE and 
Scopus journals. This list was used to add the Scopus journal ID number to 99.8% of the 
MEDLINE records (corresponding to 7611 different MEDLINE journal abbreviations) 
from 2003 to 2008.  

b) A sequence of steps using different matching criteria was then used to match MEDLINE 
and Scopus article data. Matching was done without replacement, meaning that if a 
particular MEDLINE record was matched in one step, it was removed from the list and 
not available for matching in a subsequent step. The matching criteria, in order, were: 
1 – Journal ID AND starting page AND (volume OR pubyear) AND soundex(title) 

http://sci.slis.indiana.edu/sts
http://trec.nist.gov/
http://www.sigkdd.org/
http://sdb.slis.indiana.edu/


2 – Journal ID AND volume AND soundex(title) 
3 – Journal ID AND pubyear AND soundex(title) 
4 – Journal ID AND soundex(title) 
5 – Given that each of the above matching steps (1-4) generated some duplicate matches 

to PMIDs (PubMed ID), the matched set was restricted to unique PMID-ScopusID 
matches (meaning each PMID and ScopusID could only appear once in the full list). 

6 – For any duplicate matches, matches where the first five initials of the first author’s 
last name did not match were removed. 

7 – All remaining unmatched PMID were left as unmatched. Results of these matching 
steps are given in Table 1. 

 
Table 1. Efficiency of matching MEDLINE to Scopus records. 

Step Counts Fraction Total matched
0 – initial MEDLINE records 3,647,481  
1 – matching criteria 1 2,847,197 78.06% 2,847,197
2 – matching criteria 2 557,991 15.30% 3,405,188
3 – matching criteria 3 91,985 2.52% 3,497,173
4 – matching criteria 4 2,676 0.07% 3,499,849
  
5-7 – remove duplicate/false matches 3,475,573 95.29% 
 
Note that the “soundex” function mentioned above is a function in MySQL that strips all non-
alphanumeric characters from text, and converts the remaining text to a string based on 
phonetics. Two strings that sound the same, but that have different spellings, can thus have the 
same soundex value. Use of the soundex function allows us to match some records where there 
are simple misspellings or punctuation differences in the article titles between the two databases. 
 
As shown in Table 1, the overall matching rate (unique PMID to ScopusID) for the entire set of 
MEDLINE documents from 2003 to 2008 was 95.3%. The matching rate for 2008 (92%) is 
lower than for previous years (over 96%) because the full 2008 data were not yet available in 
Scopus. 
 
2) Additional data were added to the matched data: numbers of references from Scopus, numbers 
of MeSH terms from MEDLINE, and the existence of a MEDLINE abstract. These data were 
then used to limit the set of records to those with sufficient text and citation information to form 
an appropriate corpus for this study. It was clear from the numbers that all 6 years (2003 to 2008) 
of records were not needed to give a set of around two million documents. We thus restricted the 
set to five years (2004 to 2008). Numbers of documents by year, using different limitations, are 
given in Table 2. 
 

Table 2. Numbers of records by year using different limitations. 
Year MEDLINE in Scopus w/ Abstr w/ >=5 

Refs 
w/ Abstr OR 

>=5 Refs 
w/ Abstr + 
>=5 Refs 

Final 

2004 575,938 553,743 454,023 436,421 489,545 400,899 389,353
2005 603,166 579,359 480,477 469,777 517,773 432,481 420,059
2006 626,895 605,734 504,747 498,328 547,663 455,412 442,743



2007 644,457 620,386 523,805 520,196 566,781 477,220 464,479
2008 650,069 597,839 506,852 490,034 547,110 449,776 437,135
Total 3,100,525 2,957,061 2,469,504 2,414,756 2,668,872 2,215,788 2,153,769
 
Several observations can be made from Table 2. First, only 80-85% of the MEDLINE records in 
Scopus actually have references. Scopus has been unable to obtain reference information from 
publishers for the other 15% or so of MEDLINE records. Second, not all records have abstracts. 
This is no fault of either MEDLINE or Scopus, but simply reflects the data that is supplied to 
them by publishers. 
 
3) The final decision on which records to keep in the corpus was determined after examination of 
the distributions of numbers of references and numbers of MeSH terms, which are shown in 
Figure 2. It was decided that only records with abstracts, at least 5 references and at least 5 
MeSH terms would be kept. This ensures that each record has sufficient numbers of references 
and MeSH terms for generation of article-to-article similarities using both text- and citation-
based similarity calculations. In addition, there were several hundred articles with very large 
numbers of references. In our experience, articles with large numbers of references can lead to 
over-aggregation of citation clusters. Thus, we arbitrarily set a threshold of a maximum of 400 
references. Any article with more than 400 references was excluded from the corpus. The final 
numbers of articles by year that met these criteria are listed in the final column of Table 2. 
 

 
 
Figure 2. Distributions of numbers of MeSH terms and numbers of references per record. 

 
The corpus identified for this project thus consists of 2,153,769 unique MEDLINE records to 
which we have added the references from the Scopus database, see Appendix A. This corpus 



represents the most complete multi-year set of medical sciences literature for which both MeSH 
terms and references exists that can be identified, and will be used for all subsequent tasks in this 
project. 
 
Task 2: Generation of Document-Document Similarities 
 
This task comprises the pre-processing and algorithm development necessary to generate 
similarity files for each of the text- and citation-based measures to be tested in this project. The 
ultimate output of Task 2 is a similarity file for each measure that contains lists of the strongest 
pairwise similarities for each article in the corpus. Each similarity file may contain on the order 
of 20,000,000 – 30,000,000 triples – where the triples are paper_id1, paper_id2, sim_value. 
 
2.a1: Text Pre-processing 
by Russell J. Duhon and Katy Börner 
 
Katy Börner’s team at Indiana University has extracted two different types of term-document 
matrices from the MEDLINE corpus: a MeSH-document matrix and a word-document matrix. 
Words for the latter were parsed from the titles and abstracts of the documents. These two 
matrices are provided as input to six different text-based approaches to similarity, see section 
2.a2. The following describes the pre-processing that was required to generate the MeSH-
document and word-document matrices. 
 
2.a1.1: MeSH Pre-processing 
 
PMIDs and associated MeSH terms (without qualifiers) were extracted from the SDB version of 
MEDLINE for all documents in the corpus. Whitespace was stripped off each end of each term, 
and all leading “*” characters were also stripped. No tokenization of MeSH terms was required 
because they are all standardized indexing terms. The numbers of articles and fraction of articles 
in the corpus associated with each MeSH term were then computed (see Figure 3, top) to 
determine if any thresholding of terms would be needed. 
 
MeSH terms were limited in the following two ways: 

• All terms that are not Class 1 descriptors per the 2009 MeSH data 
(http://mbr.nlm.nih.gov/Download/2009/MeSH/README) were removed from the set. 
This had the effect of removing the Class 3 (Check Tags) and Class 4 (Geographical 
Locations) terms, which have little or nothing to do with content. 

• To maintain consistency with the references data, one of the natural thresholds associated 
with the references data (explained below) was adopted. All MeSH terms that were listed 
for fewer than 4 documents were removed from the set. The upper end of the distribution 
was left intact because many of the researchers on this contract felt that those terms 
occurring in many documents (e.g., the MeSH term “Humans” is indexed for 66% of the 
documents) would be useful to the calculation of similarities. The final distribution of 
MeSH terms thus identified is shown in Figure 3, bottom. 

 

http://mbr.nlm.nih.gov/Download/2009/MeSH/README


 
 

Figure 3. Initial/raw and final (after thresholding) distributions of title/abstract words, 
MeSH terms, and cited references. 

 
The final MeSH-document matrix is based on the MeSH term list associated with the final 
distribution in Figure 3, and has been made available for generation of similarities to all 
subcontractors. The number of unique MeSH terms in the final MeSH-document matrix is thus 
23,347 with a total number of 25,901,212 MeSH terms occurring in all 2,153,769 documents, see 
Appendix A. 



 
2.a1.2: Title/Abstract (TA) Pre-processing 
 
PMIDs and associated titles and abstracts were extracted from the SDB version of MEDLINE for 
all documents in the corpus, and made available for stemming, tokenization, and stopwording.  
An initial distribution of words, similar to the MeSH term distribution mentioned above, is 
shown in Figure 3, top.  
 
After reviewing the functionality of the standard stemmer and tokenizer in the Natural Language 
Toolkit (NLTK), a standard natural language processing library, the stemmer and tokenizer were 
replaced with a simplified procedure that produces identical output (except as described below), 
since most punctuation is discarded. The simplified procedure is given here. 
 
All punctuation characters except ' were removed from the text, and replaced with a single space 
each. The resulting text was converted to all lower case, then split on whitespace, leaving only 
tokens with no whitespace in them, and no empty tokens. Then, in each token, contractions 
ending in 'll, 're, 've, 's, 'd, or n't were separated into a root and a contraction, and the contraction 
portions were removed (all of those contraction suffixes are forms of words on the stopword list 
or possessive forms of other words). All apostrophes were then removed from the token. All 
tokens appearing on the stopword list, see Appendix A (which is a combination of an official 
MEDLINE stopword list of 132 words, and a second list of 300+ words commonly used at NIH 
and provided by David Newman, UC Irvine) were then removed, as were tokens consisting of a 
sequence of digits. 
 
Tokens were then further limited using the same methodology applied to MeSH terms. Thus, all 
tokens that were listed for fewer than 4 documents were removed from the set. The final 
distribution of tokens from titles and abstracts thus identified is shown in Figure 3, bottom, and 
has been made available to all project researchers for generation of similarities. The number of 
unique tokens in the final word-document matrix is thus 272,926 with a total number of 
175,412,213 tokens occurring in the 2,153,769 documents. The total number of individual token 
occurrences is 277,008,604. Thus, there are on average 128.6 individual title/abstract-based 
token occurrences associated with each document. 
 
2.a2: Creation/Procurement of Text Algorithms 
 
The (23,347 x 2,153,769) MeSH-document matrix and the (272,926 x 2,153,769) title/abstract 
(TA) word-document matrix are provided as adjacency lists as input to different text-based 
approaches to similarity. The five different approaches, along with associated 
collaborators/subcontractors, are listed here: 
 

• Co-word analysis (Co-word), also known by labels such as term co-occurrence—to be 
performed by Russell Duhon, IUB. 

• Latent Semantic Analysis (LSA)—to be performed by Russell Duhon, IUB. 
• Topic modeling algorithms based on Latent Dirichlet Allocation (Topics)—to be 

performed by Russell Duhon, IUB and separately by Dave Newman, funded by 
NIH/NINDS. 



• Self-Organizing Maps (SOM)—Subcontract to Andre Skupin, SDSU. 
• Collexis engine—Subcontract to Bob Schijvenaars and Aaron Sorensen, Collexis. 

 
Efficient code for calculating the sets of 2 trillion+ cosine similarities and retaining the top few 
documents most similar to a given document was written specificially for this project. The code 
used to compute the MeSH similarities was modified to compute the TA similarities, because the 
TA data could not fit in the available memory if stored in the same fashion as were the MeSH 
data. 
 
Commonly available Latent Semantic Analysis algorithms were finding the task intractable, and 
after some searching an algorithm was found that uses the Generalized Hebbian Algorithm 
(available at http://www.dcs.shef.ac.uk/~genevieve). The custom cosine similarity code from 
above was once again altered to run efficiently given the much higher density of LSA output. 
 
Dave Newman likewise prepared custom similarity calculation code with some minor assistance 
from the group at IUB related to running it on available computing resources. 
 
The work described above created significant capabilities for running similarities of very large 
data sets with a range of densities. The time to run even the largest data set (the TA similarities) 
with the most complex similarity calculation took just five calendar days from start to finish with 
over 310 days of processing time on IU’s Quarry supercomputer. That is about 75,000 
similarities per second per process, or about 4.5 million similarities per second across all the 
processes running in parallel.  
 
2.a3: Calculation of Text-based Similarities 
 
This section describes how the different approaches are used to calculate similarity files for the 
MeSH-document matrix and the term-document matrix. Each similarity file contains triples of 
paper_id1, paper_id2, sim_value. 
 
Each original text-based similarity file contained at least the top 15 similarity pairs for each 
document. However, large similarity files (2M documents with the top15 or higher similarity 
pairs for each document) are too large for our clustering routines to run efficiently. Thus, we 
filter the similarities to generate a reduced size similarity file. Contrary to intuition, it has been 
our experience that filtering of similarity lists acts as noise reduction, and actually increases the 
accuracy of a clustering solution.  
 
Our solution for filtering the similarities was to generate a top-n similarity file for each case. The 
basic idea behind this filtering is that papers that are more strongly linked (have higher 
similarities) should contribute more edges to the solution space. Papers with small similarities 
should not contribute as many edges because they are not very similar to anything. To give an 
example, consider paper A whose average similarity value over the top15 similarities is 0.85. 
Then consider paper B whose average similarity over the top15 similarities is 0.15. Note that we 
picked paper A because it has the highest average top15 similarity value, and paper B because it 
has the lowest average top15 similarity value of the entire set of 2.15M papers. These two papers 
thus define the top15 similarity range; paper A contributes 15 edges to the similarity file, and 

http://www.dcs.shef.ac.uk/%7Egenevieve


paper B contributes only 5 edges to the similarity file. We then scale all other papers between 
these two based on log(avg(top15 sim)). Thus, each paper contributes between 5 and 15 edges to 
the similarity file. We then de-duplicated all (A:B – B:A) pairs for efficiency, and used these top-
n similarity files as input to the clustering steps.  
 
2.a3.1 Co-Word Analysis (Co-Word) 
by Russell J. Duhon and Katy Börner 
 
The co-word analysis steps described here were run in turn on both the MeSH-document and 
word (TA)-document matrices. A minor preprocessing step was taken first, to reduce later 
computational overhead. All terms and documents were replaced with integers that uniquely 
identified them. This allows later calculations to only store a single integer per document or 
term, instead of having to store an entire string of characters. 
 
Before running the similarity calculations, tf-idf (term frequency, inverse document frequency) 
was performed on the input data. No special work was required to have tf-idf run quickly, though 
new code was written for this purpose (to run on the data format being used, instead of requiring 
the data format be transformed to work with existing means for calculating tf-idf). The code 
operated as follows: 

• Load the number of documents each term occurs in, d, from a file containing the values. 
This file was created as part of the original processing. 

• For each term i, compute the inverse document frequency as idfi = log(D/di), where D is 
the total number of documents in the corpus. 

• Read the file with the raw occurrence data, which consists of term i, document j, raw 
occurrence (ni,j) triples. While reading each triple, keep track of the total occurrences of 
all terms k in eachdocument j as (sum(nk,j)). 

• Read the file with raw occurrence data again. This time, as each term, document, raw 
occurrence triple is read, calculate the term frequency as tfi,j = ni,j / sum(nk,j). 

• Calculate tf-idf as tf-idfi,j = tfi,j * idfi, and write out each term, document, tf-idf triple to an 
output file. 

 
Then, the cosine similarity code mentioned in the previous section was run. That code computes 
the fifty most similar documents for each document in a range of a few thousand documents. 
Computations covering different ranges of documents are done in parallel. The code works as 
follows: 

• Load the tf-idf term occurrence data for the range of documents needing similarities 
computed, and all documents they will be compared to, into memory. 

• Specifically, for each document, retain a sorted list of terms that are non-zero, and a 
mapping from each term to the tf-idf of that term in that document. 

• For every document A loaded into memory, compute the Euclidean norm ||Aj|| of the 
term vector as ||Aj|| = sqrt(sum(tf-idfi,j

2)) over all terms i. 
• For every document in the range needing similarities computed, prepare an empty min-

heap to hold the top 50 values. 
• For every document A, calculate the cosine similarity between it and all documents B 

with which it is to be compared, as cosine = A • B / ||A|| ||B||, where the numerator is the 
dot product of the tf-idf vectors associated with documents A and B, and the denominator 



consists of the Euclidean norms of A and B. An efficient way to calculate the dot product 
of the two vectors is to compute the intersection of the sorted term lists for each 
document, then multiply and sum only the tf-idfs of the intersecting elements. 

• While computing the cosine similarities for any document A, the top 50 list can be 
effectively managed using the min-heap as follows. Load the first 50 similarities 
calculated into the min-heap sorted by descending cosine value. For each succeeding 
similarity value, if newly calculated similarity for B is larger than the minimum similarity 
in the min-heap, add the new similarity into the heap using cosine value ranking, and 
discard the lowest value. If the newly calculated value for B is less than the minimum 
value in the heap, the newly calculated value can be discarded. 

• At the end, write out all documents and their similarities for the min-heap of each 
document in the range of documents needing similarities computed (this could 
alternatively be done immediately after the loop step for that document, before the next 
document’s most similar documents were computed). 

 
When parsing out the cosine calculation to multiple processes and processors, the MeSH 
similarity code uses all documents B with each document A. However, the TA calculation was 
much larger (272,926 TA tokens vs. 23,347 MeSH tokens); thus all documents B could not be 
placed in the same calculation for any given document A. Instead, each run of the code uses a 
large chunk of the total data as the documents to be compared to. This does not add much 
overhead compared to the having the entire data set in memory. Due to the specific constraints of 
the computers used to run the calculation, seventeen chunks were used. For the MeSH 
similarities, the range of documents needing similarities computed was 20,000 in size, and for 
the Title/Abstract similarities, the range was 5,000 in size. Note that these numbers are specific 
to this corpus and IU hardware configuration and would need to be adjusted for other data sets or 
hardware. The target should be, absent external constraints, to allow as many processes to fit in 
memory simultaneously as there are processing cores on the computers being run on. No matter 
how fast the individual processors, a substantial number will be required to complete the work in 
a reasonable length of time, as described in 2.a2. Approximately sixty-fold parallelism was used 
in this case. 
 
2.a3.2 Latent Semantic Analysis (LSA) 
by Russell J. Duhon and Katy Börner 
 
Latent Semantic Analysis (LSA) is a technique for reducing the dimensionality of a document-
term matrix by finding lower rank matrices that together approximate the information in the full 
matrix. It works by minimizing the sum of the squares of differences between the entries in the 
original matrix and the approximations of those values. It is typically computed using Singular 
Value Decomposition (SVD), though it can also be computed using techniques such as Principal 
Components Analysis. 
 
LSA typically uses the following process: 

• The values in the term-document matrix are converted to weights, in this case to tf-idf 
weights, using the process mentioned in section 2.a3.1. Conversion to tf-idf weights are a 
current best practice, although log-entropy weighting is also commonly used. 



• An SVD calculation is performed on the entire matrix to compute the singular value 
matrix S using  
 X = T S DT 
where X is the original term-document matrix with D documents and N terms, T is the 
‘term’ matrix composed of N terms and k singular vectors (or concepts onto which the 
documents load to varying degrees), S is the singular value matrix with k singular values 
along its diagonal, and D is the ‘document’ matrix composed of D documents and k 
singular vectors. k is typically on the order of 300-500, and is thus much smaller than N. 
The representation of the matrix is thus much smaller than the original matrix, and much 
easier to manipulate further. In addition, LSA accounts for synonymy to some degree in 
that similar terms will end up loading highly on the same factor. 

• Similarities between document pairs are then typically computed as cosines between 
rows of the reduced matrix D using the dot product between rows. 

 
The use of LSA, besides greatly reducing the size of the data, has been shown to lead to 
similarities between documents that are better at satisfying human expectations than do typical 
co-word approaches (see, for instance, Gorrell 2005, Generalized Hebbian Algorithm for Latent 
Semantic Analysis)1. Within an LSA calculation, there are many different methods used to either 
directly calculate, or to approximate, the matrix S. The most standard method is to use the SVD 
calculation mentioned above; however, SVD is not always practical at the scale of 2 million 
documents. 
 
The particular method used to calculate S in this project is based on the Generalized Hebbian 
Algorithm (GHA). GHA LSA approximates the top concepts of the LSA (the singular values of 
the S matrix) one at a time, with tunable parameters governing desired convergence. Since only 
the top concepts are desired, this is much faster than approaches that calculate all of the LSA 
concepts simultaneously. While it does not fully minimize the error described above, the 
eventual output is only in terms of similarities, and only the highest similarities. Thus, provided 
the documents have similar relative loadings on the GHA LSA vectors towards the extremes, 
failing to completely minimize the error described above will have little or no effect on the 
results. As such, parameters were chosen that provided acceptable runtimes, and the first few 
vectors were compared against more strict approximations to verify that this assumption was 
reasonable. Specifically, GHA LSA was run with a convergence length (the parameter that 
governs how exactly vectors are approximated) of 1,000,000 for the MeSH data, retaining the 
first 200 concepts, and a convergence length of 10,000 for the title/abstract data, retaining the 
first 100 concepts. The code was modified (as recommended in a comment by the author, by 
altering a constant) to allow all data to be loaded into memory. Flush statements were also added 
after each time the code writes to a file or standard out, because data was being buffered for too 
long before being written. 
 
The output of GHA LSA is the diagonal matrix of singular values S and the N by k term matrix 
T. From this, it is possible to quickly compute the document matrix D by multiplying the inverse 
of the singular value matrix by the transpose of the term-concept matrix by the transpose of the 
document-term matrix, and taking the transpose of the result. By writing the result out in the 
                                                            
1 http://www.dcs.shef.ac.uk/~genevieve/gorrell_webb.pdf  

http://www.dcs.shef.ac.uk/%7Egenevieve/gorrell_webb.pdf


same format as the data used for the title/abstract cosine similarity calculations, the same cosine 
code from section 2.a3.1 can be used to compute cosine similarities of the concept vectors for 
each pair of documents, with some small modifications. These are: 

• Since the LSA output is much denser than the previous input data, but with many fewer 
dimensions, all entries (zero and non-zero) for each document are stored in fixed-width 
arrays, and the dot products of the arrays are calculated using BLAS (Basic Linear 
Algebra Subprograms). 

• Also, since the LSA output for MeSH and for title/abstract data are similar in density and 
dimension, the same similarity calculation code can be used in each case. 

 
In addition, when the top-n sim file for the LSA sets were calculated, an edge range of 5 – 13 
was used rather than the typical 5 – 15. The 5 – 15 range was calculated first, but gave a very 
large number of edges. Thus, the range was reduced to 5 – 13 to reduce the total number of edges 
to something closer to what was ultimately used for most of the other similarity files. 
 
2.a3.3 Topic modeling algorithms based on Latent Dirichlet Allocation (Topics) – UCI 
by Dave Newman  
 
The topic modeling algorithms here were only run on the TA data, and were not run on the 
MeSH data.  
 
Preprocessing: We obtained the word-document data as is from the STS website at IU. We 
conducted a small amount of additional preprocessing to the word-document data set. First, 131 
topically-uninteresting, but frequently occurring words were removed from the data (e.g. words 
such as 'study', 'studies', 'result', 'results', etc.) Next, all terms that occurred fewer than 50 times 
across the entire corpus were removed. The resulting word-document data retained all 2,153,769 
documents, but reduced the number of unique tokens to 65,776. The total number of word-
document triples was 243,724,698, thus giving an average length of 113 words per document. 
 
Modeling: We ran the standard Gibbs-sampled topic model on the collection. Three separate 
topics models were learned at the following topic resolutions: T=500, T=1000 and T=2000 
topics. These topics models were run for: 1600, 1500 and 1200 iterations (i.e. entire sweeps 
through the corpus) respectively. We used the following Dirichlet prior hyperparameter settings: 
beta=0.01 and alpha=0.05*N/(D*T). Examples of topics are in 
http://www.ics.uci.edu/~newman/katy/. See: 
http://www.ics.uci.edu/~newman/katy/topics.T500.iter1600.txt  
http://www.ics.uci.edu/~newman/katy/topics.T1000.iter1500.txt  
http://www.ics.uci.edu/~newman/katy/topics.T2000.iter1200.txt  
Reports comparing similar topics are: 
http://www.ics.uci.edu/~newman/katy/closetopics.T500.txt  
http://www.ics.uci.edu/~newman/katy/closetopics.T1000.txt  
http://www.ics.uci.edu/~newman/katy/closetopics.T2000.txt  
 
Similarity Computation: We computed the top 20 most similar documents for each of the 
2,153,769 documents in the corpus. A topic-based similarity metric was used, using an equal 

http://www.ics.uci.edu/%7Enewman/katy/topics.T500.iter1600.txt
http://www.ics.uci.edu/%7Enewman/katy/topics.T1000.iter1500.txt
http://www.ics.uci.edu/%7Enewman/katy/topics.T2000.iter1200.txt
http://www.ics.uci.edu/%7Enewman/katy/closetopics.T500.txt
http://www.ics.uci.edu/%7Enewman/katy/closetopics.T1000.txt
http://www.ics.uci.edu/%7Enewman/katy/closetopics.T2000.txt


weighting of the T=500, T=1000 and T=2000 topic models. Specifically, we computed the 
similarity between document a and document b using the following formula: 
 sim(a,b) = 1 - ( L1(a500-b500) + L1(a1000-b1000) + L1(a2000-b2000) )/6  
where L1 is the L-1 norm, and a500, etc. is the distribution over T=500 topics of document a. 
We spot-checked a small number of similarities using PubMed, and this spot-checking indicated 
good agreement and consistency with PubMed. Similarity results are in: 
http://www.ics.uci.edu/~newman/katy/newman_topic_model_sim.txt.gz  
 
2.a3.4 Self-Organizing Maps (SOM) 
by André Skupin and Joseph Biberstine 
 
The self-organizing map (SOM) method is a form of artificial neural network that generates a 
low-dimensional geometric model from high-dimensional data. The software used in this study is 
one of the most widely known SOM implementations, SOM_PAK, which was created during the 
mid-1990s by the Neural Networks Research Centre at Helsinki University of Technology, under 
the direction of the inventor of the SOM method, Teuvo Kohonen. 
 
In order to allow processing of the Medline-based data, a number of modifications had to be 
made to the SOM_PAK program and the whole package recompiled for the particular hardware 
being used. Notable changes include a greatly increased maximum line size for input files. That 
is due to the fact that dimensions numbered in the thousands were likely not anticipated by the 
original programmers, yet, with terms used in the documents treated as dimensions, and each 
dimension ultimately represented with floating-point weights (one value for each neuron and 
dimension), lines can be several hundred thousand characters long.  
 
Another modification considered the distance metric used. SOM_PAK uses the Euclidean metric 
throughout, which is not appropriate for the extremely sparse vectors encountered with these 
kinds of text documents. That’s an adaptation of SOM_PAK using the cosine measure was 
ported over to this version of SOM_PAK (since the current version of SOM_PAK used is 
different from the one for which the cosine measure was originally created). 
 
Early during preprocessing it became clear that the dimensionality of the word-document matrix 
(d=272,926) would far exceed what could be done when raw term counts where used. Thus, 
further processing was focused on the MeSH-document matrix, which has a 90% smaller set of 
raw dimensions (d= 23,347). 
 
Even using the MeSH-document data, the SOM training with SOM_PAK and raw data failed 
when presented with anywhere near the number of original dimensions (20,000+) or a large 
number of neurons (2 million plus). After numerous experiments, it was decided to keep MeSH 
terms occurring in a minimum of 2,000 documents (i.e., 2,236 terms). Further experimentation 
showed that SOM_PAK failed when the number of these 2,236-dimensional SOM neurons 
approached 80,000. A workable solution was finally found with a SOM consisting of 275x275 
neurons, which would allow making distinctions among 75,625 locales in the high-dimensional 
space. 
 

http://www.ics.uci.edu/%7Enewman/katy/newman_topic_model_sim.txt.gz


Even with reduced dimensionality, the complete SOM input file of all 2.1 million documents still 
amounts to over 9GB, due to the sparseness of the resulting binary vectors. That is far too large 
to deal with directly. Therefore, during neural network initialization and training, several 
independently drawn random samples of the data set were used. Yet run time were on the order 
of days. We have not yet been able to evaluate the success of this training, due to numerous 
technical issues – all related to the sheer size of the input data – and mapping of the full data set 
onto the trained SOM is estimated to take several weeks of raw computing time. That does not 
include various necessary post-processing steps. The peculiar rise in the quantization error 
during training is also still under investigation. 
 
Thus, it has thus become clear in the course of this study that a brute-force use of SOM for 
representing text content may be suitable for corpi containing several thousand to several tens of 
thousands documents, but that a large corpus requires a more refined approach.  
 
2.a3.5 Collexis Engine 
by Bob Schijvenaars and Aaron Sorensen, Collexis  
 
Collexis processed the data using the typical vector space model as well. On both datasets (the 
MeSH-document and word-document) the bm25 algorithm was applied (Stephen Robertson, 
Karen Spärck Jones) as described below. 
 
The specific formula used to compute the similarity between a document q = (w1, …, wn) and 
another document d was: 

  
Where f(wi) is the frequency of word wi in document d. Note that f(wi)=0 for words that are in 
document q but not in d. For the constants k1 and b typical values were chosen (2 and 0.75 
respectively). Document length |D| was estimated by adding the word frequencies wi per article. 
The average document length  was computed over the entire document set. The IDF value for 
a particular word wi was computed using: 
 

  
 
where N is the total number of documents in the dataset and n(wi) is the number of documents 
containing word wi. Note that each individual term in the summation in the first formula is 
independent of document q. Hence these were computed first and to keep computing time within 
acceptable limits, all scores below 2.0 were discarded. (Note, this threshold of IDF > 2.0 acts to 
limit the word set to words where n(wi) < 21,324, or words that occur in less than 0.99% of the 
documents). 
 



For the MeSH terms a slightly different filter was applied to keep computation time acceptable 
since term frequencies are not available for MeSH terms. Therefore, scores for individual terms 
follow a different distribution. Scores below 1.5 were discarded, with the exception of the terms 
of two documents that only contained terms with a score < 1.5. 
 
2.a3.6 PubMed Related Articles (pmra) 
by Kevin W. Boyack 
 
In addition to the text-based similarity types detailed above, all of which were mentioned in the 
original proposal, we added one text-based similarity type to the study – the PubMed Related 
Articles (pmra) similarity. When one does a search on PubMed/MEDLINE and displays the 
results in Summary mode, most records show a Related Articles link.  
 

“The Related Articles link is as straightforward as it sounds. PubMed uses a powerful 
word-weighted algorithm to compare words from the Title and Abstract of each citation, 
as well as the MeSH headings assigned. The best matches for each citation are pre-
calculated and stored as a set.” 2  

 
The pmra algorithm used to pre-calculate these Related Articles (Lin & Wilbur) has been 
through sufficient testing and review to have been accepted for use in PubMed, and is thus a de 
facto standard. It seemed wise to add a set of calculations based on this method to the project as 
an additional point of comparison. More detail on the pmra method is given in an Appendix. 
 
Dave Newman (UCI) wrote and ran a script that queried PubMed for these pre-calculated 
matches for each document in our corpus. This script returned a rank-ordered list of the Related 
Articles, which was then post-processed to limit the lists to only documents that were in the 
corpus. After post-processing, these lists contained from 2 to 20 Related Articles for each article 
in the corpus, listed in rank order, but without similarity values. 
 
In order to compare a map of science using these Related Articles to the other maps, it was 
necessary to convert the rank-ordered lists of relationships into similarity values. We estimated 
the Related Articles similarity values as 
 RAi,j = 1.00 – 0.02*(51 – ranki,j) 
for all articles j related by ranki,j to article i. Thus, for any article i, the first ranked Related 
Article was assigned a similarity value of 1.00, the second a similarity value of 0.98, etc. We 
cannot note strongly enough that these are not the original similarity values calculated using the 
pmra method, but are rather estimated values from rank orders. This similarity method is referred 
to hereafter as pmra-est. 
 
Given that the original distribution of similarities ranged from 2-20, rather than from the desired 
5-15 (the definition of our top-n similarity files), we needed to generate a top-n similarity file 
that would have a similar edge distribution to the other text-based similarity files. To do this, we 
used the following transformation: 
 
                                                            
2 http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_190.html  

http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_190.html


Original number of similarities Top-n similarities used 
2-6 No change 
7-8 7 
9-10 8 
11-12 9 
13-14 10 
15-16 11 
17-18 12 
19-20 13 

 
The final pmra-est top-n similarity file contained 18,511,515 document pairs. 
 
2.b1: Citation Pre-Processing 
by Kevin W. Boyack 
 
Several different citation-based maps have been generated from the corpus: one based on co-
citation analysis, one based on bibliographic coupling, and two based on direct citation. Each of 
these methods requires different processing from a single starting point. This starting point is the 
full list of citing_document, reference_document (citing:cited) pairs from the corpus. This initial 
list of citing:cited pairs consists of 80,754,581 pairs that cite 15,503,380 unique references; the 
distribution for this unfiltered set of references is shown in Figure 3, top.  
 
2.b1.1: Co-citation method 
 
For purposes of generating a co-citation similarity, references were filtered using the following 
formula which is based on the standard co-citation practice at STS: 

• The articles from the corpus were grouped by publication year, as shown in the “Final” 
column of Table 2, and separate citing:cited pair files were generated for each of the five 
publication years. 

• For each yearly set, the citations to each unique reference document were counted. 
• For each yearly set, reference papes that did not meet the following criteria were filtered 

out of the set: 
  (age = 0 and ncites > 3) OR (age < 3 and ncited > (age+1)) OR ncited > 5 
  where age = citing publication year – cited publication year. 

• The remaining references from the five yearly sets were combined to form the full set of 
references, resulting in a set of 2,473,611 unique references. The original citing:cited pair 
list was then filtered to contain only those pairs where the cited document was in the final 
reference list. This resulted in a pairs file containing 50,221,140 citing:cited pairs. The 
distribution corresponding to this set of references is shown in Figure 3, bottom; all 
references were cited at least 4 times, and the most highly cited reference was cited by 
1.1876% of the citing documents.  

 
The final set of citing:cited pairs was then used to generate a similarity measure using the 
following process: 

• Co-citation frequencies between pairs of reference documents were calculated. A co-
citation occurs when two documents are cited by the same citing paper. All such 



instances were counted, resulting in a matrix with the numbers of co-citation counts 
between cited document pairs. The total number of cited document pairs with a non-zero 
co-citation count was xxx,yyy,zzz. 

• Each co-citation value was modified using 1/log(p(C+1)) where p(C) = C(C-1)/2 and C 
is co-citation counts. 

• K50 values were generated from each modified frequency value as: 
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For K50, note that Fi,j = Fj,i , but that Ei,j ≠ Ej,i . E is an expected value of F, and varies 
with jS . K50 differs from most other measures in that it is a relative measure that 
subtracts out the expected value. Thus K50 will only be positive for those reference paper 
interactions that are larger than expected given the matrix row and column sums. 

• The full K50 matrix is too large for our clustering routines, thus we filter the similarities 
to generate a reduced size similarity file. Contrary to intuition, it has been our experience 
that filtering of similarity lists acts as noise reduction, and actually increases the accuracy 
of a clustering solution. Filtering was done by 1) removing all pairs with negative K50 
values, 2) sorting the remaining list by reference and descending K50 value, and 
removing all references which had more than 15 K50 values tied in the first position, and 
3) using the total degree (or number of pairs) distribution for each reference, and scaling 
the log(degree) values to a 5-15 scale. The degree for each reference thus determines how 
many pairs that reference brings into the final similarity file, varying between 5 and 15. 
We call this a top-n similarity file. Although the clustering routines to be used ignore 
(A:B – B:A) duplicates, it is useful to de-duplicate the similarity file for efficiency. After 
de-duplication, the total number of cited document pairs in the cited document similarity 
file was 15,537,317. 

 
2.b1.2: Bibliographic coupling method 
 
While co-citation generates a similarity between pairs of cited documents, bibliographic coupling 
generates a similarity between pairs of citing documents using the original (unfiltered) 
citing:cited pair list mentioned above. No filtering of citing documents was needed because the 
full set (2.15M documents) is well within the range of what our clustering routines can manage. 
The full citing:cited pair list was used to generate a similarity using the following process: 

• Bibliographic coupling frequencies between pairs of citing documents were calculated. 
Bibliographic coupling occurs when two documents reference the same reference paper. 
All such instances were counted, resulting in a matrix with the numbers of bibliographic 
coupling counts between citing document pairs. The total number of citing document 
pairs (full matrix) with a non-zero coupling count was 170,835,050. 



• The next three steps were the same as the final three steps listed for the co-citation 
method above: calculating a modified frequency using 1/log(p(C+1)), calculating K50 
values, and filtering the full list of similarities to a top-n similarity file. After de-
duplication, the total number of citing document pairs in the bibliographic coupling 
similarity file was 14,159,303. 

 
2.b1.3: Direct citation method 
 
Direct citation is where one document within the set cites another document within the set. Thus, 
although pre-filtering is not necessary, documents that either do not cite or are not cited by any 
other document within the set will not be a part of the calculation. The citing:cited pairs (or 
direct citations) for this calculation were determined by finding all pairs where both the citing 
and cited document were within the set. This reduced the citing:cited pair list to 23,218,091 
pairs. This list was used to generate a similarity using the following process: 

• Each citing:cited pair was assigned a weight wt = 1/n where n is the total number of 
papers cited by the citing paper in the pair. 

• Since this citing:cited:wt list is directional, and thus comprises only the upper half of a 
full citation matrix, this list was flipped (cited:citing:wt) and concatenated to the upper 
half, thus forming a full matrix. 

• The next two steps were the same as the final two steps listed for the co-citation method 
above: calculating K50 values, and filtering the full list of similarities to a top-n 
similarity file. After de-duplication, the total number of citing document pairs in the 
direct citation similarity file was 7,581,738. A total of 1,996,050 of the possible 
2,153,769 citing documents are included in the calculation using this direct citation 
method. 

 
Add top-n similarity distributions (5-15 range) for each sim? 
 
Task 3: Clustering 
by Kevin W. Boyack 
 
After all of the similarities files were generated, the next step in the process was to generate a 
detailed clustering of documents from each similarity method. The same clustering method was 
used for all similarity measures; thus the clustering method should not contribute to any 
variability in the final results. The basic clustering process was comprised of 3 main steps. 

1) The DrL graph layout routine was run 10 separate times using a similarity file as input, 
starting with 10 different random seeds, and using a cutting parameter of 0.975. DrL uses 
a random walk routine and prunes edges based on degree and edge distance. A typical 
DrL run using an input file of 2M nodes and 15M edges will cut approximately 60% of 
the input edges, where an edge represents a single document-document similarity pair 
from the original input file. At the end of the layout calculation, roughly 40% of the 
original edges will remain. Different starting seeds (essentially different starting points 
for the random walk) will give rise to different graph layouts and different (but typically 
highly overlapping) sets of remaining edges. We use these differences to our advantage in 
this clustering process. 



2) Those edges that appear in 6 or more out of the 10 DrL solutions are considered to be the 
robust edges, and are listed in a separate file. These are used as the input edges to a 
single-linkage clustering routine (see Appendix …), which essentially finds and outputs 
all distinct graph components. Each separate component is a cluster, and these clusters 
are referred to as level 0 clusters. 

3) Logic dictates that a cluster should have a minimum size; otherwise there is not enough 
content to differentiate it from other clusters. In our experience, a cluster should contain a 
minimum of approximately five papers per year (or 25 papers over the five year length of 
the corpus) to be considered topical. Thus we take all clusters with fewer than 25 papers, 
and aggregate them. This is done by calculating a K50 similarity between the small 
clusters and all other clusters, and aggregating the small cluster with the cluster to which 
it has the largest K50 similarity. K50 values are calculated from aggregated modified 
frequency values (the 1/log(p(C+1)) values) where available, and from the aggregated 
top-n similarity values in all other cases. 

 
Previous experience has shown that a cluster solution based on the combination of 10 DrL runs is 
much more robust than that from a single DrL run. For example, using a co-citation model of 
roughly 2.1M documents and 16M edges, the adjusted Rand index (a measure of 
correspondence) between pairs of single DrL solutions was 0.32, while the adjusted Rand index 
between pairs of 10xDrL solutions was over 0.80. Requiring that an edge persist in 6 out of 10 
separate DrL solutions thus limits the final solution to only those edges (and thus the resulting 
clusters) that are relatively robust. However, this robustness can also have a deleterious effect on 
the final solution – any nodes that do not have any edges persisting in 6/10 DrL solutions will 
drop out of the solution. To some degree, this is in itself a measure of the robustness (or 
conversely, ambiguity) in the similarity measure. Solutions in which many nodes are dropped do 
so because of ambiguity in the overall similarity space of the document set. Thus, similarity 
measures that generate solutions dropping many nodes can be thought of as more ambiguous 
than similarity measures that drop few nodes. 
 
3.a: Co-citation Clustering 
 
Nearly all of the similarity measures employed in this study are between the actual MEDLINE 
documents that are being clustered. Thus, the process detailed above works directly for these 
measures. However, there were two calculations – the co-citation calculation and one of the 
direct citation calculations – where the similarity and resulting clustering were based on 
reference papers rather than the MEDLINE documents. For these two cases the output of step (2) 
is a list of the reference papers assigned to each level 0 cluster.  
 
In co-citation analysis, clusters of reference papers are generated, and then the citing papers are 
assigned to those cluster based on the reference patterns. One of the benefits of co-citation 
analysis is that citing articles can be assigned to multiple clusters if they cite literature from 
multiple clusters. We use the following detailed methods (between steps (2) and (3) above) to 
assign citing papers to the level 0 reference paper clusters. 

• For each citing paper (from the original MEDLINE corpus), the number of references to 
papers in each of the level 0 clusters was calculated from the reference lists. 



• For each citing paper, the maximum number of references to level 0 clusters was 
calculated, and the paper was labeled as unambiguous if that maximum number was 
greater than 1. Citing papers with a maximum number of 1 were labeled as ambiguous. 

• Calculate a t-value for each citing paper, level 0 cluster pair where t is the number of 
references to papers to the level 0 cluster divided by the square root of the number of 
papers in the level 0 cluster. Thus, the t-value is related to the fraction of the cluster that 
is cited by the citing paper. For unambiguous papers, t-values are only calculated for 
paper/cluster papers where the number of references to the cluster is greater than 1. This 
avoids long tails for unambiguous papers. 

• For each citing paper, normalize the t-values so that they add up to 1. These normalized t-
values are used as the current paper to level 0 cluster weights. 

• For each citing paper, if it is also a reference paper in a level 0 cluster, the fractions are 
adjusted in the following way. The fractions for these papers are set to one half their 
previous values, thus giving each a summed fractional value of 0.5. The remaining 0.5 
fraction is assigned to the level 0 cluster to which the paper belongs as a reference paper. 
The citing paper, level 0 fractions are then re-summed to give the final fractional 
assignments. 

 
Once the citing paper assignment have been made, then clustering step (3) above is applied to 
merge clusters that contain fewer than 25 papers into larger clusters. 
 
3.b: Tuning of the Clustering Process for Text-based Methods 
 
It is important that any classification or map of science have a very high coverage of the 
document space. Early results from the citation-based approaches using the clustering approach 
detailed above (requiring an edge to appear in 6/10 DrL solutions) showed that they each 
retained between 90-98% of the articles in the cluster solution. However, the first two text-based 
approaches (pmra and Collexis TA) that were run using this same clustering criterion retained 
only 84.0% and 83.0% of the articles in the corpus, respectively. 
 
This coverage of less than 85% is not sufficient. We thus decided to attempt tune the clustering 
criteria in a way that would increase coverage while minimizing changes to the cluster size 
distribution, or to the accuracy of the cluster solution. We found that by reducing the threshold to 
4/10 edges, coverage was increased by 10.2% and 10.9% (to around 94%), respectively, for our 
two cases. However, along with the increase in coverage, there was a large increase in the total 
number of edges retained in the solution, and a corresponding increase in overall graph 
connectedness, resulting in a giant component containing over 90% of the documents. This 
particular clustering result is not useful. To reduce the size of the giant component, and to obtain 
a cluster distribution that was similar to that obtained from the 6/10 edge solutions, we 
implemented an additional criterion into the single-link algorithm that would only merge clusters 
if the edge on which the merge would be based had an edge weight of 7/10 or higher. The 
addition of this criterion gave us an appropriate cluster solution; Table 3 shows that this new 
4/10 solution gives a slightly larger number of clusters and a slightly larger largest cluster than 
the original 6/10 solution, but that the two solutions are similar overall. The textual coherence (to 
be explained in Section 4) of the solutions using the new 4/10 edge criterion were also very 
similar to those obtained using the 6/10 edge criterion, as shown in Figure 4. We thus decided to 



use the 4/10 edge criterion with the 7/10 cluster merge criterion for all of the text-based 
clustering solutions.  
 

Table 3. Comparison of clustering characteristics for the 6/10 and 4/10 edge criterion 
solutions.  

Method #A 10xDrL %A retain #Lev0 
clust 

#Lev1 
clust 

Max Lev1 Coh (text)

Collexis TA 6/10 1,788,084 83.02% 181,806 27,608 536 0.09903 
Collexis TA 4/10 2,022,694 93.91% 163,877 28,858 764 0.09798 
       
pmra-est 6/10 1,809,526 84.02% 138,330 27,481 632 0.10567 
pmra-est 4/10 2,029,564 94.23% 129,505 28,963 921 0.10364 
 

 
Figure 4. Comparison of the textual coherence of different clustering criteria for two text-

based approaches. 
 
3.c: Clustering Results 
 
Metrics from the 10xDrL cluster solutions from each of the various similarity metrics are given 
in Table 4. Cluster size distributions are shown in Figure 5. 
 

Table 4. Clustering characteristics of the various similarity files. 
Method Top-n sims Compute #A per DrL #A 10xDrL %A retain
Bib coupling 14,159,303 Low 2,146,549 2,081,022 96.62% 
Co-citation 15,537,317 Low  2,118,644 98.37% 
Direct citation whl 7,581,738 Low 1,996,050 1,940,535 90.10% 
Direct citation frac 7,581,738 Low 1,996,050 1,996,050 92.68% 



      
Co-word MeSH  17,575,220 Medium 2,153,769 2,062,642 95.77% 
LSA MeSH  Very high    
SOM MeSH      
Collexis MeSH 18,414,440 Medium 2,153,769 2,011,339 93.39% 
      
Co-word TA  24,276,859 High 2,153,769 1,796,349 83.41% 
LSA TA 22,804,907 Very high 2,153,769 1,259,740 58.49% 
Topics TA  18,752,066 High 2,153,769 2,033,221 94.40% 
Collexis TA  16,604,589 High 2,153,769 2,022,694 93.91% 
      
pmra-est  18,511,515 Very Low 2,153,769 2,029,564 94.23% 
Collexis Full      
 
Method #Lev0 clust #Lev1 clust MaxSz Lev1   
Bib coupling 207,764 32,782 778   
Co-citation 188,561 32,184 3245   
Direct citation whl 456,112 50,505 221   
Direct citation frac 456,112 50,719 376   
      
Co-word MeSH  95,334 24,708 1517   
LSA MeSH      
SOM MeSH      
Collexis MeSH 146,040 26,864 1015   
      
Co-word TA  200,233 21,388 657   
LSA TA 335,012 22,757 369   
Topics TA  108,808 24,163 1422   
Collexis TA  163,877 28,858 764   
      
pmra-est  129,505 28,963 921   
Collexis Full      
 



 
Figure 5. Cluster size distributions for many of the cluster solutions. 

 
The clustering results lead to several observations. First, the direct citation method gives the 
largest number of level1 clusters, and has the smallest cluster sizes. In fact, there were nearly 
10,000 level 0 clusters with fewer than 25 members (including 7,800 with only two members) 
that could not be aggregated into level1 clusters because there was simply no direct citation 
relationship with any member of any other clusters. Thus, these level 0 clusters were carried 
forward to be level 1 clusters. These are not shown in Figure 5. In addition, only 90% of the 
corpus was placed into clusters by the direct citation method; of the 10% that were not placed in 
clusters, 7.3% were not even in the original similarity file due to a lack of connectedness with 
any other article within the corpus, while the other 2.6% were dropped due to the 6/10 edge 
criteria used in clustering. These results related to direct citation are not surprising – by its very 
nature direct citation within a five-year window will have far less connection within the set than 
will the other citation or text-based methods.  
 
Second, co-citation gives by far the largest cluster sizes for its largest clusters. However, once 
those clusters with size > 400 articles are accounted for, the co-citation and bibliographic 
coupling distributions are very similar. Co-citation and bibliographic coupling also have the 
highest article retention rates using the 6/10 edge criterion at 98.4% and 96.6%, respectively. 
These two methods provide the most comprehensive coverage of the corpus using the clustering 
parameters selected. 
 
Third, the co-word TA method has by far the lowest coverage of any of the methods at 83.4%. It 
also had by far the largest number of similarities in its input file (24.28 million) of any measure 
tested. These two facts are likely related. Although the generation of the co-word TA top-n 
similarity file was done using the exact same method used for other text-based similarities, the 
distribution of similarities (leading to the top-n assignment) was quite different, and gave rise to 



a larger similarity file. Although the reason for this is unknown, we speculate that it is due to 
very slight variations in similarity between document sets arising primarily from the high end of
the word-document distribution (those words that occur in a very large fraction of documents). 
The other TA methods (Topic and Collexis) b
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Fourth, the numbers of clusters from the bib coupling, co-citation, and many of the text-based 
solutions are in a similar range (26,000 – 33,000 clusters), and thus are roughly comparable for 
the comparisons that will be reported in a subsequent section. A few of the methods h
c
 
Task 4: Evaluation o
b
 
Given that the main purpose of this project is to determine which method of generating a map o
science (or a fine-grained categorization of science), we propose to use three different type
measurements to compare the accuracy of the cluster solutions. These include measuring 
coherence of clusters based on 1) textual information, and 2) reference information, and a
measuring 
so
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The first evaluative measure we use in this study compares the topical coherence of the differen
cluster solutions. We calculate the topical coherence of each cluster in each solution using the 
information radius (IRad), or Jensen-Shannon divergence (Fuglede & Topsoe, 2004). IRad is 
calculated for each document from the word probability vector for that do

  
where p is the frequency of a word in a document, q is the frequency of the same word in the 
cluster of documents, and D is the distribution over all words and documents in the cluster. The 
textual sample for each document used in this calculation was a concatenation of the document
title and abstract. IRad is r

 
eported for each cluster, and is the average IRad value over all over 

ocuments in the cluster. 

ence, IRad measures how 
losely the titles and abstracts in a cluster share the same vocabulary.  
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IRad is a divergence measure, meaning that if the titles and abstracts of the documents in a 
cluster are very different from each other, using different sets of words, the IRad value will be 
very high, or close to 1.0. Clusters of documents where the titles and abstracts use similar sets of 
words, a less diverse set of words, will have a lower divergence. In ess
c
 
IRad varies with cluster size. For example, a cluster with 10 very different documents will hav
larger set of unique words, and thus a higher divergence value than a cluster with only 3 very
different documents. The maximum possible IRad values for various cluster sizes will occur 
when the documents in the cluster have completely different sets of words. These clusters c



approximated, for a particular corpus, by forming random clusters of documents from that 
corpus. We have calculated IRad values for various cluster sizes from this SBIR corpus, as 
shown in Figure 6. Each measured divergence value in Figure 6 is an average of the divergence 
values from a very large number of random clusters (e.g. 5000 random clusters of size 20, 50
random clusters of size 100, 1000 random clusters of size 500). A curve fit of the m

00 
easured 

alues was used to estimate the IRad values for every cluster size from 2 to 1000.  
 

 
Figure 6. Divergence of random sets of documents by cluster size. 
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Coherence was calculated from divergenc
 Cohi = Div(rand) i – Div(actual) i 
where Div(rand) is the random divergence for the particu
value for an entire cluster solution is th
 Coh = sum(ni*Coh
a

. Coherenc results from e various s ilarity files. 
Method  
Bib coupling 96.62% 0.08599 0.11684 0.10007  
Co-citation 98.37% 0.08167 0.11 71 0.09 72 0 4  
Direct citation whl 90.10% 0.06072    
Direct citation frac 92.68% 0.06138 0.08138 0.07020  
      
Co-word MeSH  95.77% 0.07643 0.07360 0.07584  
LSA MeSH      
SOM MeSH      
Collexis MeSH 93.39% 0.07654 0.07360 0.07590  



      
Co-word TA  83.41% 0.07580 0.05761 0.06846  
LSA TA      
Topics TA  94.40% 0.09374 0.07699 0.08752  
Collexis TA  93.91% 0.09798 0.09560 0.09787  
      
pmra-est  94.23% 0.10364 0.10597 0.10554  
Collexis Full      
 
Given that this coherence value is based on textual components (words from titles and abstract)
we fully expected the text-based solutions to give higher coherence values than citation-b
solutions. In addition, among text measures we expected the Topic model measure to do 
particularly well given that a di

, 
ased 

vergence measure (Kullback-Leibler divergence) that is related to 
ad is used in its calculation. 
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Computation of Related Articles 
(http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helppubmed&part=pubmedhelp#pubmed
help.Computation_of_Relat)  
 
The neighbors of a document are those documents in the database that are the most similar to it. 
The similarity between documents is measured by the words they have in common, with some 
adjustment for document lengths. To carry out such a program, one must first define what a word 
is. For us, a word is basically an unbroken string of letters and numerals with at least one letter of 
the alphabet in it. Words end at hyphens, spaces, new lines, and punctuation. A list of 132 
common, but uninformative, words (also known as stopwords) are eliminated from processing at 
this stage. Next, a limited amount of stemming of words is done, but no thesaurus is used in 
processing. Words from the abstract of a document are classified as text words. Words from 
titles are also classified as text words, but words from titles are added in a second time to give 
them a small advantage in the local weighting scheme. MeSH terms are placed in a third 
category, and a MeSH term with a subheading qualifier is entered twice, once without the 
qualifier and once with it. If a MeSH term is starred (indicating a major concept in a document), 
the star is ignored. These three categories of words (or phrases in the case of MeSH) comprise 
the representation of a document. No other fields, such as Author or Journal, enter into the 
calculations. 
 
Having obtained the set of terms that represent each document, the next step is to recognize that 
not all words are of equal value. Each time a word is used, it is assigned a numerical weight. This 
numerical weight is based on information that the computer can obtain by automatic processing. 
Automatic processing is important because the number of different terms that have to be 
assigned weights is close to two million for this system. The weight or value of a term is 
dependent on three types of information: 1) the number of different documents in the database 
that contain the term; 2) the number of times the term occurs in a particular document; and 3) the 
number of term occurrences in the document. The first of these pieces of information is used to 
produce a number called the global weight of the term. The global weight is used in weighting 
the term throughout the database. The second and third pieces of information pertain only to a 
particular document and are used to produce a number called the local weight of the term in that 
specific document. When a word occurs in two documents, its weight is computed as the product 
of the global weight times the two local weights (one pertaining to each of the documents). 
 
The global weight of a term is greater for the less frequent terms. This is reasonable because the 
presence of a term that occurred in most of the documents would really tell one very little about a 
document. On the other hand, a term that occurred in only 100 documents of one million would 
be very helpful in limiting the set of documents of interest. A word that occurred in only 10 
documents is likely to be even more informative and will receive an even higher weight. 
 
The local weight of a term is the measure of its importance in a particular document. Generally, 
the more frequent a term is within a document, the more important it is in representing the 
content of that document. However, this relationship is saturating, i.e., as the frequency 
continues to go up, the importance of the word increases less rapidly and finally comes to a finite 
limit. In addition, we do not want a longer document to be considered more important just 

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helppubmed&part=pubmedhelp#pubmedhelp.Computation_of_Relat
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helppubmed&part=pubmedhelp#pubmedhelp.Computation_of_Relat


because it is longer; therefore, a length correction is applied. This local weight computation is 
based on the Poisson distribution and the formula can be found in Lin J and Wilbur WJ. 
 
The similarity between two documents is computed by adding up the weights (local wt1 × local 
wt2 × global wt) of all of the terms the two documents have in common. This provides an 
indication of how related two documents are. The resultant score is an example of a vector score. 
Vector scoring was originated by Gerard Salton and has a long history in text retrieval. The 
interested reader is referred to Salton, Automatic Text Processing, Reading, MA: Addison-
Wesley, 1989 for further information on this topic. Our approach differs from other approaches 
in the way we calculate the local weights for the individual terms. Once the similarity score of a 
document in relation to each of the other documents in the database has been computed, that 
document's neighbors are identified as the most similar (highest scoring) documents found. 
These closely related documents are pre-computed for each document in PubMed so that when 
you select Related Articles, the system has only to retrieve this list. This enables a fast response 
time for such queries. 
 
 



Appendix A: Project Webpage  
All text-based datasets are freely available at http://sci.slis.indiana.edu/sts. They comprise: 
 
Raw Data 

List of PMIDs sts-pmids.txt.gz (5MB) 

List of stop words sts-stop-words.txt.gz 
(4KB) 

 
Analysis Input Data 

Title/Abstract term adjacency list sts-text-adj.gz (642MB) 

MeSH adjacency list sts-mesh-adj.gz (98MB) 
 
Analysis results will also be made available from this site. They will comprise: 
 
Analysis Result Data 
 
 
Linkage‐based analysis  

Co‐citation  sts‐cocite‐sim.gz sts‐cocite‐clust.gz (56MB)

Bibliographic coupling 
sts‐bibcoup‐topn.sim.gz 
(121MB) 

sts‐bibcoup‐clust.gz (9.1MB) 

Direct citation 
sts‐directcit‐topn.sim.gz 
(67MB) 

sts‐direct‐clust.gz (8.8MB) 

Title/Abstract term analysis  

Co‐occurrence  sts‐TA‐co.sim sts‐TA‐co.clust 

LSA  sts‐TA‐lsa.sim sts‐TA‐lsa.clust 

Topic model (IU)  sts‐TA‐topics‐iu.sim sts‐TA‐topics‐iu.clust

Topic model (UCI) 
sts‐TA‐topics‐uci.sim.gz 
(117MB) 

sts‐TA‐topics‐uci.clust 

http://sci.slis.indiana.edu/sts
http://sci.slis.indiana.edu/sts/data/sts-pmids.txt.zip
http://sci.slis.indiana.edu/sts/data/sts-cocite-clust.gz
http://sci.slis.indiana.edu/sts/data/sts-bibcoup-topn.sim.gz
http://sci.slis.indiana.edu/sts/data/sts-bibcoup-clust.gz
http://sci.slis.indiana.edu/sts/data/sts-directcit-topn.sim.gz
http://sci.slis.indiana.edu/sts/data/sts-direct-clust.gz
http://sci.slis.indiana.edu/sts/data/sts-TA-topic-uci-topn.sim.gz


Self‐organizing maps (SOM)  sts‐TA‐som.sim sts‐TA‐som.clust 

Collexis 
sts‐TA‐collx‐topn.sim.gz 
(146MB) 

sts‐TA‐collx.clust 

MeSH analysis 

Co‐occurrence  sts‐mesh‐co.sim.gz (155MB) sts‐mesh‐co.clust 

LSA  sts‐mesh‐lsa.sim sts‐mesh‐lsa.clust 

Topic model (IU)  sts‐mesh‐topics‐iu.sim sts‐mesh‐topics‐iu.clust

Topic model (UCI)  sts‐mesh‐topics‐uci.sim sts‐mesh‐topics‐uci.clust

Self‐organizing maps (SOM)  sts‐mesh‐som.sim sts‐mesh‐som.clust 

Collexis  sts‐mesh‐collexis.sim sts‐mesh‐collexis.clust

Other analysis 

Collexis (full engine on raw MEDLINE 
data) 

sts‐collexis‐full.sim  sts‐collexis‐full.clust 

NCBI related records data  sts‐ncbi‐topn.sim.gz (115MB) sts‐ncbi‐topn.clust 

 

http://sci.slis.indiana.edu/sts/data/sts-TA-collx-topn.sim.gz
http://sci.slis.indiana.edu/sts/data/sts-mesh-co.sim.gz
http://sci.slis.indiana.edu/sts/data/sts-ncbi-topn.sim.gz

