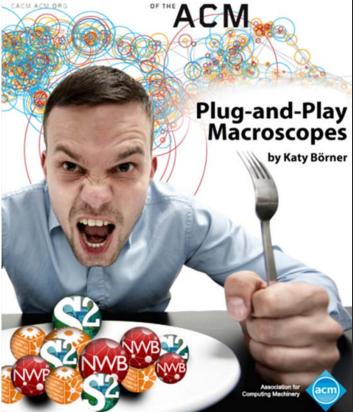
Plug-and-Play Macroscopes That Empower Science

Katy Börner

Cyberinfrastructure for Network Science Center, Director Information Visualization Laboratory, Director School of Library and Information Science Indiana University, Bloomington, IN katy@indiana.edu



With special thanks to the members at the Cyberinfrastructure for Network Science Center, the NWB team, the Sci2 team, the EpiC team, and all other teams that use OSGi/CIShell.

JSMF Workshop on Plug-and-Play Macroscopes, Indiana University, Bloomington, IN November 16, 2012

COMMUNICATIONS

Börner, Katy. (March 2011). Plug-and-Play Macroscopes. *Communications of the ACM*, 54(3), 60-69.

Video and paper are at <u>http://www.scivee.tv/node/27704</u>

Designing "Dream Tools"

Many of the best micro-, tele-, and macroscopes are designed by **scientists keen to observe and comprehend what no one has seen or understood before.** Galileo Galilei (1564–1642) recognized the potential of a spyglass for the study of the heavens, ground and polished his own lenses, and used the improved optical instruments to make discoveries like the moons of Jupiter, providing quantitative evidence for the Copernican theory.

Today, scientists repurpose, extend, and invent new hardware and software to

create **"macroscopes"** that may solve both local and global challenges.

The tools I will show you today **empower** me, my students, colleagues, and 100,000 others that downloaded them.

Macroscopes

Decision making in science, industry, and politics, as well as in daily life, requires that we make sense of data sets representing the structure and dynamics of complex systems. Analysis, navigation, and management of these continuously evolving data sets require a new kind of data-analysis and visualization tool we call a macroscope (from the Greek macros, or "great," and skopein, or "to observe") inspired by de Rosnay's futurist science writings.

Macroscopes provide a "vision of the whole," helping us "synthesize" the related elements and enabling us to detect patterns, trends, and outliers while granting access to myriad details. Rather than make things larger or smaller, macroscopes let us observe what is at once too great, slow, or complex for the human eye and mind to notice and comprehend.

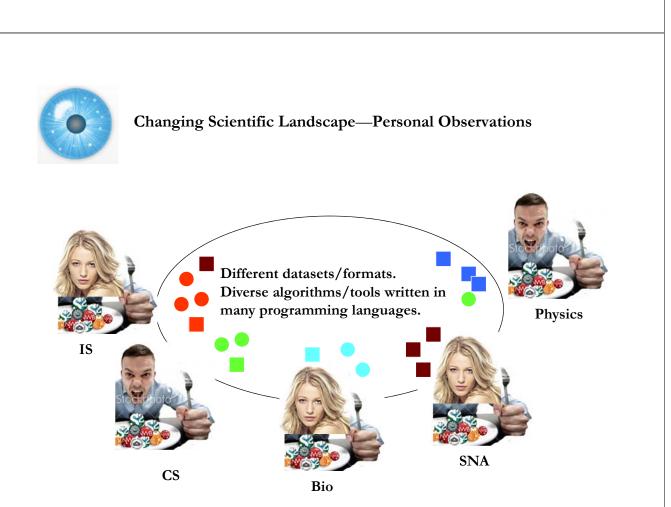
Microscopes

Telescopes

Macroscopes

4

3



Goal of This Talk

Inspire computer scientists to implement software frameworks that **empower domain scientists** to assemble their own continuously evolving macroscopes, adding and upgrading existing (and removing obsolete) plug-ins to arrive at a set that is truly relevant for their work—with little or no help from computer scientists.

While microscopes and telescopes are physical instruments, **macroscopes resemble continuously changing bundles of software plug-ins.** Macroscopes make it easy to select and combine algorithm and tool plug-ins but also interface plug-ins, workflow support, logging, scheduling, and other plug-ins needed for scientifically rigorous yet effective work.

They make it easy to share plug-ins via email, flash drives, or online. To use new plugins, simply copy the files into the plug-in directory, and they appear in the tool menu ready for use. No restart of the tool is necessary. Sharing algorithm components, tools, or novel interfaces becomes as easy as sharing images on Flickr or videos on YouTube. Assembling custom tools is as quick as compiling your custom music collection.

5

Related Work

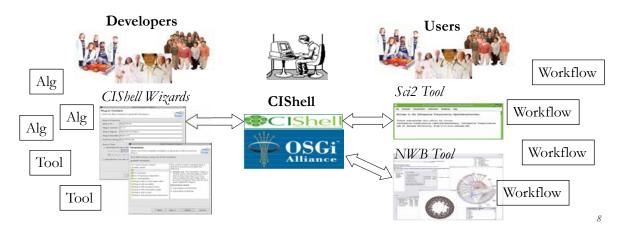
Google Code and SourceForge.net provide special means for developing and distributing software

- In August 2009, SourceForge.net hosted more than 230,000 software projects by two million registered users (285,957 in January 2011);
- In August 2009 ProgrammableWeb.com hosted 1,366 application programming interfaces (APIs) and 4,092 mashups (2,699 APIs and 5,493 mashups in January 2011)

Cyberinfrastructures serving large biomedical communities

- Cancer Biomedical Informatics Grid (caBIG) (<u>http://cabig.nci.nih.gov</u>)
- Biomedical Informatics Research Network (BIRN) (<u>http://nbirn.net</u>)
- ▶ Informatics for Integrating Biology and the Bedside (i2b2) (<u>https://www.i2b2.org</u>)
- > HUBzero (<u>http://hubzero.org</u>) platform for scientific collaboration uses
- myExperiment (<u>http://myexperiment.org</u>) supports the sharing of scientific workflows and other research objects.

Missing so far is a **common standard** for


- the design of modular, compatible algorithm and tool plug-ins (also called "modules" or "components")
- > that can be easily combined into scientific workflows ("pipeline" or "composition"),

7

> and packaged as **custom tools.**

OSGi & CIShell

- CIShell (<u>http://cishell.org</u>) is an open source software specification for the integration and utilization of datasets, algorithms, and tools.
- It extends the Open Services Gateway Initiative (OSGi) (<u>http://osgi.org</u>), a standardized, component oriented, computing environment for networked services widely used in industry since more than 10 years.
- Specifically, CIShell provides "sockets" into which existing and new datasets, algorithms, and tools can be plugged using a wizard-driven process.

CIShell Developer Guide

(<u>http://cishell.wiki.cns.iu.edu</u>)

CIShell Home

@1 Added by Micah Linnemeier, last edited by Micah Linnemeier on Mar 16, 2011 (view change)

About the Cyberinfrastructure Shell

The Cyberinfrastructure Shell (CIShell) is an open source, community-driven platform for the integration and utilization of datasets, algorithms, tools, and computing resources. Algorithm integration support is built in for Java and most other programming languages. Being Java based, it will run on almost all platforms. The software and specification is released under an Apache 2.0 License.

CIShell is the basis of Network Workbench, TexTrend, Sci² and the upcoming EpiC tool.

CIShell supports remote execution of algorithms. A standard web service definition is in development that will allow pools of algorithms to transparently be used in a peer-to-peer, clientserver, or web front-end fashion.

CIShell Features

A framework for easy integration of new and existing algorithms written in any programming language

Using CIShell, an algorithm writer can fully concentrate on creating their own algorithm in whatever language they are comfortable with. Simple tools are provided to then take their algorithm and

🖉 Edit 🛛 🕂 Add 🗸

Learn More...

- <u>CIShell Papers</u>
- <u>CIShell Powered Tools</u>
- <u>Algorithms</u>
- <u>Plugins (coming soon)</u>
 <u>Misc. Tool Documentation</u>
- CIShell Web Services (coming soon)
- Screenshots

Getting Started...

- Documentation & Developer Resources
- Download

Getting Involved...

<u>Contact Us</u>

IShell CIShell Portal (http://cishell.org/home.html)

9

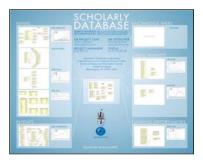
Science of Science Cyberinfrastructures

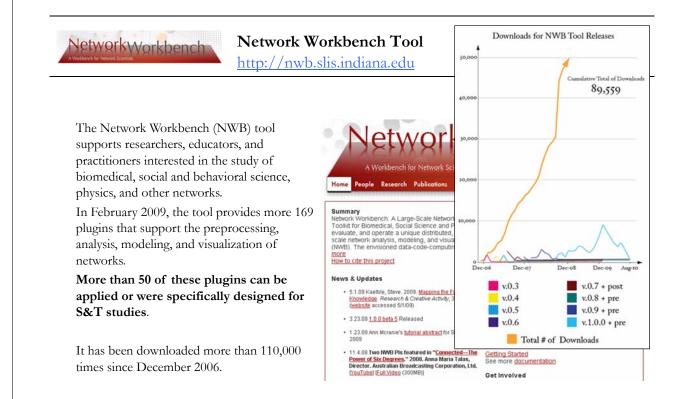
Scholarly Database: 25 million scholarly records <u>http://sdb.slis.indiana.edu</u>

nes S. McDonnell Foundation

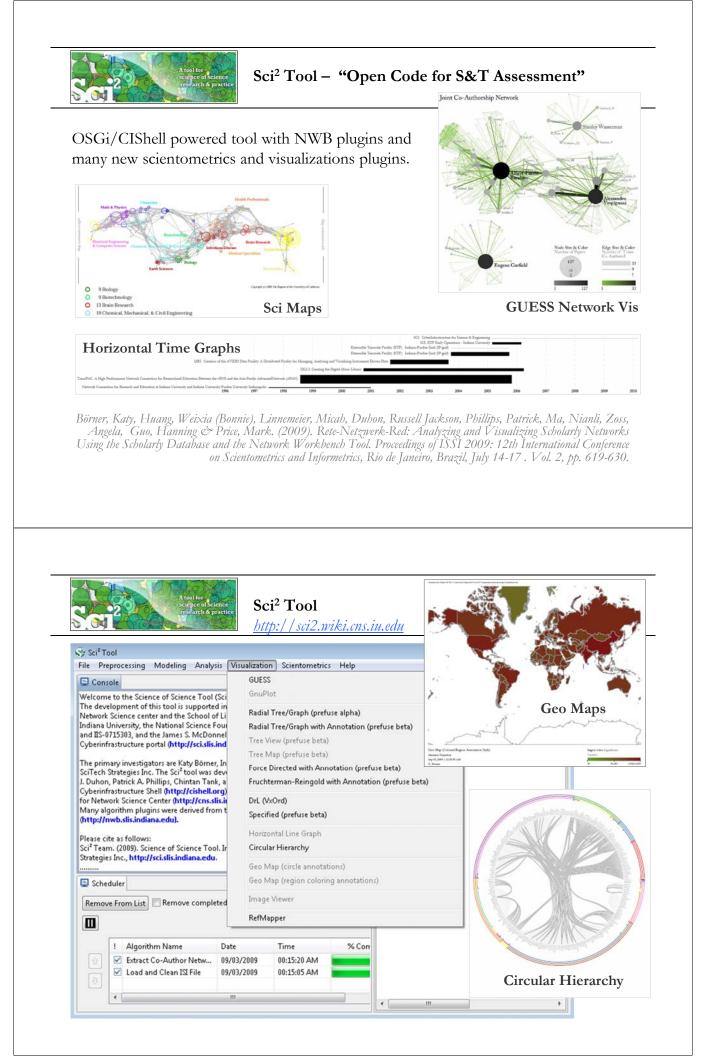
VIVO Research Networking http://vivoweb.org

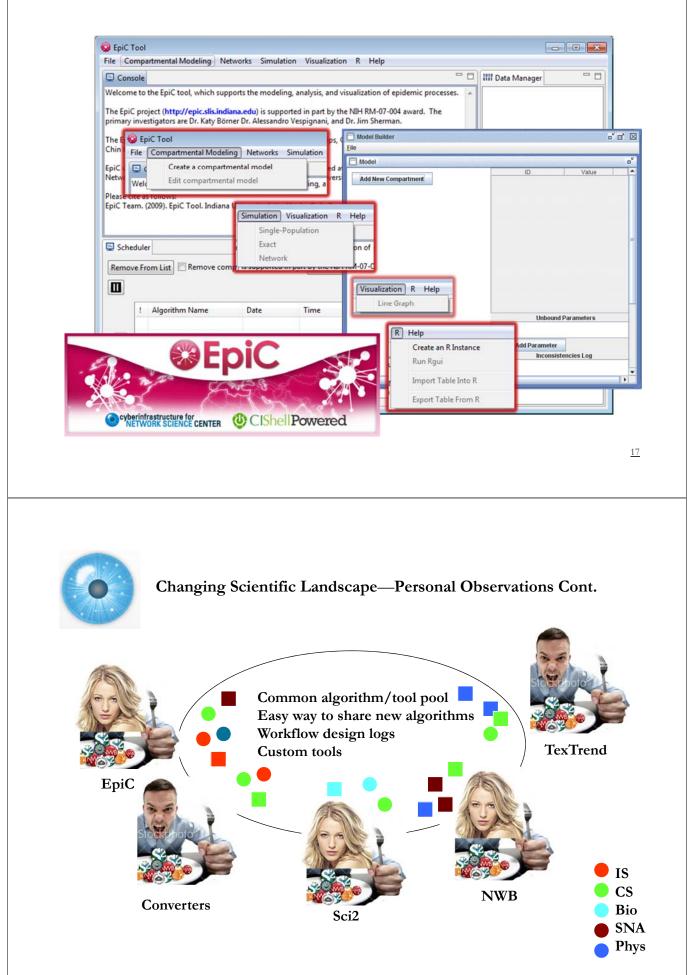
Information Visualization Cyberinfrastructure http://iv.slis.indiana.edu


Network Workbench Tool & Community Wiki http://nwb.slis.indiana.edu


Science of Science (Sci²) Tool and CI Portal <u>http://sci.slis.indiana.edu</u>

Epidemics Cyberinfrastructure http://epic.slis.indiana.edu/


Herr II, Bruce W., Huang, Weixia (Bonnie), Penumarthy, Shashikant & Börner, Katy. (2007). Designing Highly Flexible and Usable Cyberinfrastructures for Convergence. In Bainbridge, William S. & Roco, Mihail C. (Eds.), Progress in Convergence - Technologies for Human Wellbeing (Vol. 1093, pp. 161-179), Annals of the New York Academy of Sciences, Boston, MA.


12 ×	Sci ² Tool A tool for science of science research & practice Email Address Password
orgot your pas o recover your a ot registered ;	ccount password, please visit our password recovery page.
	Katy Börner (2010) Science of Science Research and Tools (12 Tutorials). Reporting Branch, Office of Extramural Research/Office of the Director, National Institutes of Health, Bethesda, MD. • Tutorial #01: Science of Science Research • Tutorial #02: Network Science / Information Visualization • Tutorial #03: CIShell Powered Tools: Network Workbench and Science of Science Tool • Tutorial #04: Temporal Analysis – Burst Detection • Tutorial #05: Geospatial Analysis and Mapping • Tutorial #07: Tree Analysis and Visualization • Tutorial #08: Network Analysis and Visualization • Tutorial #09: Large Network Analysis and Visualization. • Tutorial #109: Using the Scholarly Database at IU • Tutorial #11: VIVO National Researcher Networking • Tutorial #12: Future Developments
	Geetha Senthal (2010). <u>Multidisciplinary Nature of Work With Reference to PIs and ICs Within a Portfolio</u> . PA Group at NIH. NIH Office of Extramural Research and Katy Börner (2010) <u>Network Visualizations Using SPIRES Data and the Sci2 Tool</u> . Office of Extramural Research at NIH.

Type of Analysis vs. Level of Analysis

	Micro/Individual	Meso/Local	Macro/Global
	(1-100 records)	(101–10,000 records)	(10,000 < records)
Statistical Analysis/Profiling	Individual person and their expertise profiles	Larger labs, centers, universities, research domains, or states	All of NSF, all of USA, all of science.
Temporal Analysis	Funding portfolio of one individual	Mapping topic bursts	113 Years of Physics
(When)		in 20-years of PNAS	Research
Geospatial Analysis (Where)	Career trajectory of one individual	Mapping a states intellectual landscape	PNAS Publications
Topical Analysis	Base knowledge from which one grant draws.	Knowledge flows in	VxOrd/Topic maps of
(What)		Chemistry research	NIH funding
Network Analysis (With Whom?)	NSF Co-PI network of one individual	Co-author network	NSF's core competency

OSGi/CIShell Adoption

CIShell/OSGi is at the core of different CIs and a total of 169 unique plugins are used in the

- Information Visualization (http://iv.slis.indiana.edu),
- Network Science (NWB Tool) (http://nwb.slis.indiana.edu),
- Scientometrics and Science Policy (Sci² Tool) (http://sci.slis.indiana.edu), and
- Epidemics (http://epic.slis.indiana.edu) research communities.

Most interestingly, a number of other projects recently adopted OSGi and one adopted CIShell:

- *Cytoscape* (http://www.cytoscape.org) lead by Trey Ideker, UCSD is an open source bioinformatics software platform for visualizing molecular interaction networks and integrating these interactions with gene expression profiles and other state data (Shannon et al., 2002). Bruce visits Mike Smoot in 2009
- *Taverna Workbench* (http://taverna.sourceforge.net) lead by Carol Goble, University of Manchester, UK is a free software tool for designing and executing workflows (Hull et al., 2006). Taverna allows users to integrate many different software tools, including over 30,000 web services. Micah, June 2010
- *MAEviz* (<u>https://wiki.ncsa.uiuc.edu/display/MAE/Home</u>) managed by Shawn Hampton, NCSA is an open-source, extensible software platform which supports seismic risk assessment based on the Mid-America Earthquake (MAE) Center research.
- **TEXTrend** (http://www.textrend.org) lead by George Kampis, Eötvös University, Hungary develops a framework for the easy and flexible integration, configuration, and extension of plugin-based components in support of natural language processing (NLP), classification/mining, and graph algorithms for the analysis of business and governmental text corpuses with an inherently temporal component.

As the functionality of OSGi-based software frameworks improves and the number and diversity of dataset and algorithm plugins increases, the capabilities of custom tools will expand.

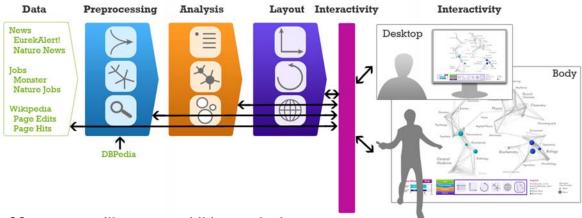
Macroscopes for Kids: Learning Objectives

Read Charts/Maps

- > Distinguish different data sources, types, amounts
- Understand different reference systems
- Understand distortion/projection
- Read visual languages

Make Charts/Maps – a la http://makezine.com but hands-on

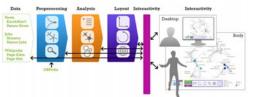
- Identify type of analysi(s) and level(s) of analysis
- Design and execute workflows
- Invent effective visual languages
- Deploy (print, bring online)


Employ READ<->MAKE feedback loop and have fun with both!

Micro/Individual Meso/Local Macro/Global (1-100 records) (101–10,000 records) (10,000 < records)**Statistical** Analysis/Profiling or states Temporal Analysis • -0-(When) Geospatial Analysis (Where) **Topical Analysis** Ē (What) T Network Analysis (With Whom?) cyberinfrastructure for NETWORK SCIENCE CENTER 21 NEEDS Deployment VALIDATION & ANALYSIS INTERPRETATION Legend Design Encodina Author Stakeholders Stared Data Madel Lateration Workflow Design 12 N N -X1 @ Conclusion (selecting Datasets, Algorithms and Parameters) : " 0 0.0 A.Q (... Graphic De Ray Data lin 2 & @ Projection/Distortion 1.0*0 Reference System Preprocessing Analysis/Modeling Acquisition Layou DATA ACQUISTION DATA ANALYSIS, MODELING & LAYOUT DATA COMMUNICATION VISUALIZATION LAYERS & PREPROCESSING

Type of Analysis vs. Level of Analysis

Macroscopes for Kids



Macroscope will empower children and others to

- Select one or many live data streams and/or static datasets, e.g., Wikipedia and DBPedia,
- Preprocess data, e.g., to delete, filter, merge, extract networks, search data.
- Analyze data, e.g., to compute node and edge properties, identify bursts and clusters.
- Layout data using different reference systems, e.g., tables, charts, circular layout, network, geospatial maps, or science maps.

Macroscopes for Kids

Macroscope will empower children and other s to

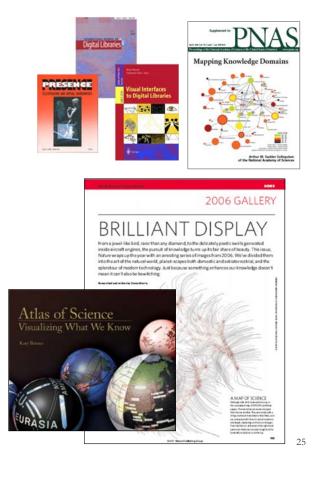
- Select a data record (e.g., rendered as dot in a scatter plot, dot on a map, or a node in a network) and to search for all other nodes with similar attributes and to request a change of their color, size, shape, or other visual attributes.
- Manipulate the layout, e.g., to sort tables, to change chart axes from linear to log scaling, change cartographic projections.
- To zoom and pan, filter, and request details, e.g., to open a Web browser with the page loaded.

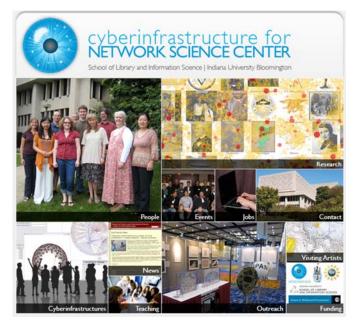
At any moment in time, the complete workflow (currently active datasets, applied preprosessing, analyses, layouts, automatically compiled legend) is visible to facilitate learning and memorization of dataset, algorithm, and parameter choices and their impact on the design of meaningful visualizations.

In 'attractor mode', i.e., no user input, the Macroscope will use a default workflow to show one out of many data streams, e.g., Wikipedia editing activity or Flickr image downloads overlaid on a geospatial map. A child, attracted to the visualization might choose to modify the default workflow or start over and create a new one. We might also provide a library of precompiled workflows – if the needs assessment suggests that this is useful. Workflows and data visualizations generated by kids online or at the NYHS can be shared online together with descriptions of insights gained.

References

Börner, Katy, Chen, Chaomei, and Boyack, Kevin. (2003). Visualizing Knowledge Domains. In Blaise Cronin (Ed.), *ARIST*, Medford, NJ: Information Today, Volume 37, Chapter 5, pp. 179-255. http://ivl.slis.indiana.edu/km/pub/2003-borner-arist.pdf


Shiffrin, Richard M. and Börner, Katy (Eds.) (2004). **Mapping Knowledge Domains**. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl_1). http://www.pnas.org/content/vol101/suppl_1/


Börner, Katy, Sanyal, Soma and Vespignani, Alessandro (2007). **Network Science.** In Blaise Cronin (Ed.), *ARIST*, Information Today, Inc., Volume 41, Chapter 12, pp. 537-607.

http://ivl.slis.indiana.edu/km/pub/2007-borner-arist.pdf

Börner, Katy (2010) Atlas of Science. MIT Press. http://scimaps.org/atlas

Scharnhorst, Andrea, Börner, Katy, van den Besselaar, Peter (2012) Models of Science Dynamics. Springer Verlag.

All papers, maps, tools, talks, press are linked from http://cns.iu.edu

CNS Facebook: <u>http://www.facebook.com/cnscenter</u> Mapping Science Exhibit Facebook: <u>http://www.facebook.com/mappingscience</u>