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1. MACROSCOPE DESIGN AND 
UTILITY 
Decision making in science, industry, and politics, as well 
as in daily life requires us to make sense of datasets that 
represent the structure and dynamics of complex natural 
and man-made systems. The analysis, navigation, and 
management of these large-scale, complex, and 
dynamically changing datasets require a new kind of tool, a 
macroscope (from the Gk. makros “great,” and skopein “to 
observe”) as proposed by Joël de Rosnay [8].  
Just as the microscope empowered our naked eyes to see 
cells, microbes, and viruses, thereby advancing the progress 
of biology and medicine; and just as the telescope opened 
our minds to the immensity of the cosmos and prepared 
mankind for the conquest of space; macroscopes promise 
us the power to view yet another dimension—the infinitely 
complex. Macroscopes give us a “vision of the whole” and 
help us “to synthesize” the elements therein. They enable 
us to detect patterns, trends, and outliers while granting us 
access to details [17, 20]. Instead of making things larger or 
smaller, macroscopes let us observe what is at once too 
great, too slow, or too complex for our eyes.  
Many of the best micro-, tele-, and macroscopes are 
designed by scientists keen to observe and comprehend 
what no one has seen before. Galileo Galilei understood the 
potential value of spyglasses for the study of the heavens, 
started to grind and polish his own lenses, and used the 
improved optical instrument to make discoveries like the 
moons of Jupiter, thus providing quantitative evidence for 
the Copernican theory. Today, scientists repurpose, extend, 
and invent new hardware and software to create 
macroscopes that may solve both local and global 
challenges [19]. 
This paper aims to inspire computer scientists to implement 
software frameworks that empower domain scientists to 
design their own custom macroscopes. The software would 
be as easy to use as Flickr, YouTube, or Lego blocks, but 
instead of sharing images and videos or building Lego 
houses, scientists would use it to share scientific datasets 
and algorithms and to assemble them into workflows. 
Scientists would customize their continuously evolving 
macroscopes by adding and upgrading existing and 
removing obsolete plug-ins to arrive at a set that is truly 
relevant for their work—all with little or no help from 
computer scientists. Some macroscopes will resemble 
cyberinfrastructures [1] providing easy access to massive 
amounts of data, services, computing resources, and expert 
communities. Others will come as Web services or stand-

alone tools. While typical microscopes and telescopes are 
static physical instruments, macroscopes provide access to 
continuously changing bundles of software.  
This paper opens with a discussion of major changes in the 
landscape of science (see sidebar 1) that pose challenges 
and opportunities for the design of effective macroscopes. 
We then present a set of desirable features for designing 
plug-and-play macroscopes and review related work. Next, 
we exemplarily present the design of a software 
architecture that extends the Open Services Gateway 
Initiative Framework (OSGi) and uses the 
Cyberinfrastructure Shell (CIShell) to support the easy 
integration of new and existing algorithms and their 
combination into simple yet powerful macroscopes. The 
OSGi/CIShell software framework is currently used in 
tools that support five different research communities. Two 
tools—the Network Workbench (NWB) Tool and the 
Science of Science (Sci2) Tool—are presented here in 
detail. The paper concludes with a discussion of related 
efforts and an outlook into the not-too-distant future.  

Sidebar 1: The Changing Scientific Landscape  

With many recent developments in the structure and 
dynamics of science comes the increased need for effective 
macroscopes that are easy to extend, share, and customize. 
For example: 
 
Star Scientist -> Research Teams: In former times, science 
was driven by key scientists. Today, science is driven by 
effectively collaborating co-author teams, often comprising 
experts from multiple disciplines as well as geospatial 
locations [4, 18]. 
Users -> Contributors: Web 2.0 technologies empower any 
user to contribute to Wikipedia and to exchange images, 
videos, or code via Fickr, YouTube, and SourceForge.net 
respectively. Wikispecies, WikiProfessionals, and 
WikiProteins combine wiki and semantic technology in 
support of real-time community annotation of scientific 
datasets [14].  
Cross-disciplinary: The best tools frequently borrow and 
synergistically combine methods and techniques from 
different disciplines of science and empower 
interdisciplinary and/or international teams of researchers, 
practitioners, or educators to fine-tune and interpret results 
collectively.  
One Specimen -> Data Streams: Microscopes and 
telescopes were originally used to study one specimen at a 
time. Today, many researchers must make sense of massive 
streams of multiple types of data having different formats, 
dynamics, and origins.  



Static Instrument -> Evolving Cyberinfrastructure (CI): 
The importance of hardware instruments that are static and 
expensive tends to decrease relative to software 
infrastructures that are highly flexible and continuously 
evolving to meet the needs of different sciences. Some of 
the most successful services and tools are decentralized, 
thereby increasing scalability and fault tolerance. 
 
In addition, there are software development practices that 
make it possible for “a million minds” to design flexible 
and scalable software, available to many to improve and 
freely use. These practices include: 
Modularity: The design of software modules with well-
defined functionality that can be combined allows for 
contribution from multiple users, reduced costs, and 
increased flexibility in tool development, augmentation, 
and customization. 
Standardization: The adoption of standards can accelerate 
development as existing code is leveraged. It helps to pool 
resources, support interoperability, and ease the migration 
from research code to production code, and hence the 
transfer of research results into industry applications and 
products. 
Open data and open code: This practice allows any user to 
check, improve, or repurpose code and eases the replication 
of scientific studies. 

2. PLUG AND PLAY SOFTWARE 
ARCHITECTURES  
When discussing the proposed plug-and-play software 
architectures, it is beneficial to make a distinction between 
the “core architecture” that can be used to establish the 
mechanism or operating system for the plug-and-play 
datasets and algorithms, the dynamic “filling” of this core 
containing the actual datasets and algorithms, and the 
bundling of all components into “custom tools.” Desirable 
features for plug-and-play macroscopes and major 
decisions to make are given in sidebar 2. 

Sidebar 2: Desirable Features and Decisions to Make 

When designing plug-and-play software architecture, a 
number of major decisions must be made based on domain 
requirements in order to arrive at powerful yet easy-to-use 
tools and services.  
 
Division of Labor: The “core architecture” has to be 
implemented by computer scientists in close collaboration 
with domain experts. Dataset and algorithm plug-ins, i.e. 
the “filling,” are provided by those most invested in the 
data and most knowledgeable about the utility of different 
algorithms—the domain experts. Domain experts also have 
the expertise needed to bundle different plug-ins into 
“custom tools” that support certain types of research. 
Computer scientists, on the other hand, are expert in 
implementing algorithms or tools in generic and efficient 
ways that can be best used by others. Hence, the ideal 
implementations of algorithms and tools will generally 
result from collaborations between computer scientists and 
domain experts. Technical manuals on how to extend the 
“core” can thus be compiled by computer scientists, while 

descriptions and tool tutorials on algorithms and datasets 
are provided by domain experts. 
Ease of Use: As most plug-in contributions and usage will 
come from non-computer scientists, it must be possible to 
contribute, share, and use new plug-ins without having to 
write any new code. Wizard-driven integration of 
algorithms and data sets by domain experts, sharing plug-
ins via email or online sites, deploying plug-ins by simply 
adding them to the “plug-in directory,” and running them 
via a menu-driven user interface (as used in Word 
processing systems or Web browsers) seems to work well.  
Core vs. Plug-ins: As will be shown, the “core 
architecture” and the “plug-in filling” can be implemented 
as sets of plug-in bundles. Answers to questions such as: 
“Should the graphical user interface, interface menu, 
scheduler, or data manager be part of the core or its 
filling?” will depend on the types of tools and services to 
be delivered.  
Plug-in Content and Interfaces: Should a plug-in 
represent one algorithm or an entire tool? What about data 
converters needed to make the output of one algorithm 
compatible with the input of the next? Should those be part 
of the algorithm plug-in, or should they be packaged 
separately? Which general interfaces are needed to 
communicate parameter settings, input and output data? 
Answers to these questions will be domain-specific as they 
depend on existing tools and practices and the problems 
that domain experts attempt to solve. 
Supported (Central) Data Models: Some tools use a 
central data model to which all algorithms conform, e.g., 
Cytoscape (see section 3). Other tools support many 
internal data models and provide an extensive set of data 
converters, e.g., the Network Workbench Tool (see section 
2.4). The former often speeds up execution and visual 
rendering while the latter eases the integration of new 
algorithms. In addition, most tools support an extensive set 
of input and output formats, since a tool that cannot read or 
write a desired data format tends to be useless for domain 
experts.  
Supported Platforms: If the software is to be used via Web 
interfaces, then Web services need to be implemented. If a 
majority of domain experts prefers a stand-alone tool 
running on a specific operating system, then a different 
deployment is necessary.  

2.1 Related Work 
There are diverse efforts that aim to empower multiple 
users to share code. Google Code and SourceForge.net 
provide unique means to share software. In summer 2009, 
SourceForge.net hosted more than 230,000 software 
projects by two million registered users; 
ProgrammableWeb.com hosted 1,366 application 
programming interfaces (API) and 4,092 mashups that 
combine data or functionality from two or more sources to 
create a new service. Web services convert the Web 
browser into a universal canvas for information and service 
delivery. Few of the many software projects, APIs, and 
mashups are useful for the design of macroscopes. 
In addition, there are infrastructures that were specifically 
designed for researchers interested in composing and 
running analysis and/or visualization pipelines or 



workflows. Among them are cyberinfrastructures (CIs) 
such as the cancer Biomedical Informatics Grid (caBIG) 
(https://cabig.nci.nih.gov), the Biomedical Informatics 
Research Network (BIRN) (http://www.nbirn.net), and the 
Informatics for Integrating Biology and the Bedside (i2b2) 
(https://www.i2b2.org), all of which serve large biomedical 
communities. The HUBzero (http://hubzero.org) platform 
for scientific collaboration uses the Rapture toolkit to serve 
Java applets. It utilizes the TeraGrid, the Open Science 
Grid, and other national grid computing resources for extra 
cycles. The collaborative environment of myExperiment 
(see section 4) supports the sharing of scientific workflows 
and other research objects. However, there exists no 
common standard on the “workflow,” “pipeline,” or 
“composition” of different algorithm plug-ins (also called 
modules or components) and datasets into scientifically 
relevant workflows. In one project alone, more than five 
incompatible “module composition” approaches were 
developed, each with its own unique implementation, e.g., 
of image registration. Researchers interested in adding a 
new algorithm plug-in to any of these cyberinfrastructures 
or in bundling and deploying a subset of plug-ins as a new 
tool/service generally must hire a computer scientist to 
achieve this. Consequently, common plug-ins often get 
duplicated, and many innovative new algorithms are never 
integrated into common CIs and tools due to resource 
limitations.  
Websites such as Many Eyes by IBM 
(http://manyeyes.alphaworks.ibm.com/manyeyes/visualizat
ions) and Swivel (http://www.swivel.com) resemble plug-
and-play data architectures and show the power of 
community data sharing and visualization. In May 2009, 
Many Eyes had more than 66,429 datasets and 35,842 
visualizations, while Swivel offered 14,622 data sets and 
1,949,355 graphs contributed and designed by 12,144 
users. Both sites let users share data (but not algorithms), 
generate and save different visualization types, and provide 
community support.  
In addition, there are commercial tools such as Tableau 
(http://www.tableausoftware.com) and Spotfire 
(http://spotfire.tibco.com), 20 free tools and APIs reviewed 
in [6] and many other tools that support data analysis and 
visualization. While all of these offer highly valuable 
functionality, none of them makes it easy for domain 
experts to share their algorithms and to bundle them into 
custom macroscopes. 

2.2 Core Architecture 
Which core architecture is best to empower domain experts 
to plug, play, and share their algorithms and to design 
custom macroscopes and other tools? Here we describe one 
possible solution that is based on OSGi/CIShell.  
 
The Open Services Gateway Initiative (OSGi) service 
platform developed by the OSGi Alliance 
(http://www.osgi.org) has been used in the industry since 
1999. It is a dynamic module system for Java, supporting 
interoperability of applications and services in a mature and 
comprehensive way with a very effective (and small) API. 
The OSGi platform eases the plug-and-play integration of 
independent components by managing class path and 

dependency issues when combining components from 
different sources. As service-oriented architecture (SOA), it 
provides an easy way to bundle and pipeline algorithms 
into “algorithm clouds.” A detailed description of the OSGi 
specification and existing reference implementations is 
beyond the scope of this paper but can be found at 
http://www.osgi.org/Specifications.  
Leveraging the OSGi platform provides access to a large 
amount of industry-standard code—prebuilt, pretested, and 
continuously updated modules—and know-how that would 
otherwise take years to reinvent/re-implement, thereby 
enabling a reduction in time to market, development costs, 
and maintenance costs.  
OSGi bundles can be developed and run using different 
frameworks—such as the Equinox project from Eclipse 
(http://www.eclipse.org/equinox), the reference 
implementation of the OSGi R4 core framework 
specification.  
 
The Cyberinfrastructure Shell (CIShell) (http://cishell.org) 
is an open source software specification for the integration 
and utilization of datasets, algorithms, and tools [11]. It 
extends OSGi by providing “sockets” into which existing 
and new datasets, algorithms, and tools can be plugged 
using a wizard-driven process. CIShell serves as a central 
controller to manage datasets and seamlessly exchange the 
data and parameters among various implementations of 
algorithms. It defines a set of generic data model APIs and 
persistence APIs. By extending the data model APIs, 
various data model plug-ins can be implemented and 
integrated. Each data model requires a persister plug-in to 
load, view, and save a dataset from/to a data file in a certain 
format. Some data models have no "persister" plug-in, but 
instead convert data to or from some other format that does 
have one. CIShell also defines a set of algorithm APIs that 
allows developers to easily develop and integrate diverse 
new or existing algorithms as plug-ins. While CIShell itself 
is written in Java, it supports the integration of algorithms 
written in other programming languages, e.g., C, C++ or 
Fortran. In practice, a pre-compiled algorithm needs to be 
wrapped as a plug-in that implements basic interfaces 
defined in the CIShell Core APIs. Pre-compiled algorithms 
can be integrated with CIShell by providing metadata to 
indicate the types of their input and output. Different 
templates are available to facilitate the integration of 
algorithms into CIShell. A plug-in developer simply needs 
to fill out a sequence of forms for creating a plug-in and 
export the plug-in to the installation directory; the new 
algorithm then appears in the CIShell graphical user 
interface (GUI) menu. In this way, any algorithm or tool 
that can be run from a command line can be made into a 
CIShell compatible plug-in. 
CIShell’s reference implementation also has basic services 
such as a work log tracking module that records user 
actions, displays them in the console, and saves them in a 
log file, while also saving error logs in a separate file. Plus, 
there is a default menu-driven interface and an algorithm 
scheduler that shows all currently scheduled or running 
processes together with their progress. It can be deployed 
as a stand-alone tool or made available as either a Web or 
peer-to-peer service.  



The CIShell Algorithm Developer's Guide [7] details how 
to develop and integrate Java and non-Java algorithms or 
third-party libraries into OSGi/CIShell-based systems. 
 
OSGi/CIShell Combined: Software designed using 
OSGi/CIShell mainly consists of a set of Java Archive 
(JAR) bundles, also called plug-ins. There are OSGi 
services, CIShell services, and dataset/algorithm services 
all running in the OSGi container. The CIShell framework 
API is itself an OSGi bundle that does not register any 
OSGi services. Instead, it provides interfaces for dataset 
and algorithm services, basic services (e.g., logging and 
conversion), and application services (scheduler and data 
manager). Each bundle has a manifest file with a 
dependency list that states which packages and other 
bundles it needs to run. All bundles are prioritized. Upon 
application start-up, bundles with the highest priority are 
started first, followed by bundles of second, third, fourth, 
etc. priority. Bundles can also be started at run time if 
needed. 
A bundle can create an object and register it with the OSGi 
service registry under one or more interfaces. The services 
layer connects bundles in a dynamic way by offering a 
publish-find-bind model for Java objects. Each service 
registration has a set of standard and custom properties. An 
expressive filter language is available to select relevant 
services. Services are dynamic, i.e., bundles can be 
installed and uninstalled on the fly while other bundles 
adapt. The service registry accepts any object as a service. 
However, registering objects under (standard) interfaces—
e.g., OSGi interfaces or the CIShell dataset and algorithm 
interfaces—helps to ensure reuse. Because of the 
declarative specification of bundle metadata, a distributed 
version of CIShell could be built without changing most of 
the algorithms.  

2.3 Algorithm Filling  
In January 2010, the OSGi/CIShell plug-in pool has more 
than 200 plug-ins. These include approximately 60 “core” 
OSGi/CIShell plug-ins and a “filling” of more than 140 
algorithm plug-ins plus 40 sample datasets. In addition, 
there are configuration files, log files, and sample data files. 
Nearly 60 percent of the algorithm plug-ins are 
implemented in Java, 20 percent in Fortran, and the 
remaining ones in C, C++, Jython, and OCaml.  

2.4 Custom Tools  
The OSGi/CIShell framework is at the core of five plug-
and-play tools that resemble simple macroscopes and serve 
different scientific communities: the IVC was developed 
for research end education in information visualization; the 
Network Workbench (NWB) Tool was designed for large-
scale network analysis, modeling, and visualization; the 
Sci2 tool is mostly used by science of science (policy) 
researchers; the EpiC Tool is under development for use by 
epidemiologists; and TEXTrend supports the analysis of 
text. We present two of these tools in detail: the NWB tool 
and the Sci2 tool.  
 

The Network Workbench (NWB) project 
(http://nwb.slis.indiana.edu) developed the NWB tool and 
associated community website for the biomedical, physics, 
and social sciences. The tool uses 39 OSGi plug-ins and 18 
CIShell plug-ins for the core architecture. Two of these 
plug-ins define the functionality of the simple GUI shown 
in Fig. 1; the menu (top) lets users load data and run 
algorithms and tools. There is a console that logs all data 
and algorithm operations and lists acknowledgment 
information on authors, programmers, and documentation 
URLs for each algorithm. The data manager (right) 
displays all currently loaded and available datasets. A 
scheduler lets users keep track of the progress of running 
algorithms. It is worth noting that this interface can be 
easily branded or even replaced, e.g., by a terminal 
interface. 
There are 21 converter plug-ins that help load data into in-
memory objects or into formats the different algorithms can 
read behind the scenes. Most interesting for users are the 
algorithm plug-ins that can be divided into algorithms for 
preprocessing (17), analysis (39), modeling (8), and 
visualization (8) purposes. 
Last but not least, there are two stand-alone tools, GUESS 
and GnuPlot, available via the menu system. GUESS is an 
exploratory data analysis and visualization tool for graphs 
and networks (http://graphexploration.cond.org) (see Fig. 
1). The system contains a domain-specific embedded 
language called Gython (an extension of Python, or more 
specifically Jython) which supports the customization of 
graph designs. GnuPlot is a portable, command-line-driven, 
and interactive plotting utility for data and related functions 
(http://www.gnuplot.info). NWB uses 15 supporting 
libraries such as Colt, JUNG, Jython, and Prefuse. Detailed 
listings are provided in the NWB tutorial [2 
http://nwb.slis.indiana.edu/Docs/NWBTool-Manual.pdf]. 
 

[Place Figure 1 here] 
 

Figure 1: The Network Workbench Tool interface 
and two visualizations of the same network dataset 

using an algorithm plug-in and the GUESS tool plug-in. 
 
A common network science workflow includes data 
loading and/or modeling, preprocessing, analysis, 
visualization, and export of results. Different sample 
workflows used by different sciences are sketched below. 
Details and references to peer-reviewed papers are given in 
[2].  
 Data conversion (across sciences) uses different 

converter algorithms to translate between more than 
20 data formats.   

 Error and attack tolerance analysis 
(physics/computer science) requires loading or 
modeling a network and deleting random nodes (error) 
or highly connected hub nodes (attack).  

 Peer-to-peer network analysis (computer science) 
might comprise the simulation of different networks 
and the analysis of their properties. 

 Temporal text analysis (information computer 
science, computer science) might apply the burst 
detection algorithm to identify sudden increases in the 



usage frequency of words. Text has to be prepared for 
this analysis. Results are often visualized.  

 Social network analysis (information science, social 
science) might compare properties of scholarly and 
friendship networks for the same set of people. The 
former network might be derived from publications, 
the latter data acquired via questionnaires and loaded. 

 Discrete network dynamics (biology) can be studied 
using the Discrete Network Dynamics (DND) tool. 
The tool bundles the loading/modeling of a multistate 
discrete network model, the generation of the state 
space graph of the model, analysis of the attractors of 
the state space, and the generation of a visualization of 
one of the attractor basins. 

Most workflows require the serial application of algorithms 
developed in very different areas of science and contributed 
by different users. Much of this complexity is hidden. For 
example, users do not see how many converters are 
involved in the execution of one workflow. Only those 
algorithms that can be applied to a currently selected 
dataset can be selected and run (all others are grayed out). 
Expert workflow templates and tutorials provide guidance 
through the vast space of possible algorithm combinations.  
 
The Towards a Macroscope for Science Policy Decision 
Making project (http://sci.slis.indiana.edu) develops tools 
for the study of science (scientometrics) that also help 
answer science policy questions. The project focuses on the 
mapping of science at the micro (individual), meso 
(institution, state), and global (all of science, international) 
levels using temporal, geospatial, topical, and network 
analyses and visualization techniques [3, 16].  
The Science of Science (Sci2) Tool provides easy access to 
relevant algorithms. Most of the algorithms were developed 
outside of scientometrics. For example, temporal analysis 
algorithms come from statistics and computer science; 
geospatial analysis algorithms from geography or 
cartography; semantic analysis algorithms from cognitive 
science, linguistics, and machine learning; network analysis 
from social science, physics, economics, Internet studies, 
and epidemiology. The different areas of research have 
highly contrasting preferences for data formats, 
programming languages, and software licenses, yet the Sci2 
tool presents them all via a unified interface. The 
importance and utility of algorithms and data formats 
depends on the specific scientometric analysis. New 
algorithms can be easily integrated and used. In order to 
use a new data format, exactly one converter has to be 
implemented that converts the new format into one of the 
existing formats. Many workflows involve more data 
converters than algorithms, as multiple converters might 
be applied to bridge formats used by different algorithms. 
Frequently, workflows have to be rerun several times, as 
input data might be imperfect and initial parameter settings 
may need to be optimized or different algorithms 
compared. Thanks to Sci2 tool, analyses that once required 
weeks or months to set up and run can now be designed and 
replicated within a few hours. Plus, the automatically 
generated work logs can be shared, rerun, and improved by 
any user.  
Workflows validated by scientometricians and published in 
peer-reviewed journals can easily be used by science policy 

makers. Frequently, visualization—or visual mapping—is 
employed to communicate analysis results to a diverse 
audience (see Fig. 2). The top left network of co-authors 
was extracted from Medline publications downloaded from 
the Scholarly Database [6]. The network consists or 
authors (represented as nodes) are connected by co-authors 
(edges). Nodes are size- and color-coded by their 
betweenness centrality. Top nodes are assumed to have 
gatekeeper roles and are labeled by the author name. The 
top right shows the UCSD Base Map of Science with 
overlays of references extracted from a set of publications. 
While the legend shows the number of journal papers cited 
in different scientific disciplines, the map shows which 
areas of research those publications are citing or drawing 
from as an indication of “input interdisciplinarity.” The 
output of an individual, institution, or country can be 
mapped analogously to give an indication of core 
competencies that might be highly focused in one area of 
science or highly interdisciplinary. Horizontal bar graphs 
are useful when aiming to understand the portfolio of a 
funding agency or the funding intake of an individual or 
institution. Funded projects might be downloaded from the 
NSF Award Search site (http://www.nsf.gov/awardsearch). 
Each project is represented by a bar that starts and ends at a 
certain time (time is shown to run from left to right). Width 
represents the duration while area size corresponds to the 
total awarded dollar amount. Equipment grants are 
represented by narrow bars of significant height, meaning 
they are highly funded over a short period of time. The 
project title is given to the left of the bar. Bars can be color-
coded by award type, e.g., SBIR, Career, etc. The 
visualization is provided as a postscript file, and thousands 
of projects can be examined at once. 
 

[Place Figure 2 here] 
 

Figure 2: Results of three Sci2 tool workflows. 
 

OSGi/CIShell-compliant plug-ins can be shared among 
tools and projects. For example, network analysis 
algorithms implemented for the NWB tool can be shared 
(as JAR files) via email or other means, saved in the plug-
in directory of another tool, and then made available for 
execution in the menu system of that tool. Text-mining 
algorithms originally developed in TEXTrend might be 
plugged in the Sci2 tool to support the semantic analysis of 
scholarly texts. Though funding for the NWB tool formally 
ended in 2009, its functionality continues to steadily 
increase as plug-ins developed for other tools become 
available. Even if no project were to fund the OSGi/CIShell 
core for some time, it remains functional and in-demand 
due to being compact, lightweight, and easy to maintain. 
Beyond these advantages, the true value lies in the 
continuously evolving algorithm “filling” and the “custom 
tools” being designed by domain scientists.  

3. DISCUSSION  
Instead of making a pilgrimage to the Library of 
Alexandria, the Large Hadron Collider, or any of the 
world’s largest optical telescopes, many researchers will 
soon be embracing Web 2.0 technology to share not only 



images and videos but also datasets, algorithms, and tools. 
They will learn to operate in a world where massive 
amounts of new data (streams), tools, services, results, and 
expertise become available at every moment of every day.  
Computer scientists have a major role to play in making 
this a productive and rewarding experience. Their decisions 
will affect the ease with which biologists, physicists, social 
scientists, and others reuse, combine, and extend existing 
algorithms and tools across disciplinary and geospatial 
boundaries in support of scientific discovery, product 
development, and education. This article serves as a “call to 
action” for computer scientists to assist domain experts in 
sharing their algorithms and datasets. Ideally they can give 
domain scientists a “fishing rod instead of a fish.” They 
will have succeeded in the design of “core architecture” if 
they are not needed anymore for the “filling” or the 
bundling of components into “custom tools.”  
Just as the value of the first telephones increased in 
proportion to the number of people using them, plug-and-
play macroscopes gain value relative to the increase 
observed in their core functionality and the number of 
dataset and algorithm plug-ins. Our team plans to extend 
the OSGi/CIShell core to support a greater variety of 
interfaces and Web services. In addition, there need to be 
more effective means by which to share datasets and 
algorithms via scholarly marketplaces.  
 
Modularity at User Interface Level 
The current OSGi/CIShell core supports modularity at the 
algorithm level but not at the visualization level. Analogous 
to the decomposition of workflows into algorithm plug-ins, 
it is possible to modularize visualization and interaction 
design. Future work will focus on the development of 
“visualization layers” that support the easy selection and 
combination of different reference systems, 
projections/distortions, graphic designs, 
clustering/grouping, and interactivity.  
 
Streaming Data 
Vast amounts of data are being generated today, which 
need to be understood in real time. Examples include 
patient surveillance data streams, which are data generated 
by epidemic models that predict the levels of susceptible, 
infected, and recovered individuals in a population over 
time. The EpiC Tool development is contributing 
algorithms that read and/or output streams of data tuples, 
enabling algorithms to emit their results as they run (rather 
than only upon completion). Data graph visualizations plot 
these tuple streams in real time, resizing (shrinking) the 
temporal axis as time passes. 
 
Web Services Deployment 
The OSGi/CIShell-based tools discussed here are stand-
alone desktop applications that support off-line work, on 
potentially sensitive data, using a GUI that is familiar to 
target users. However, there exist application domains that 
benefit from the online deployment of macroscopes. While 
the OSGi specification provides basic support for Web 
services, CIShell will be extended to address the specific 
needs of macroscope designers.  
 
Marketplaces and Incentive Design 

Many domain experts are seriously challenged when trying 
to utilize an evolving set of thousands of possibly relevant 
datasets compiled for different studies, in different quality 
and coverage, saved in different formats, and tagged using 
terminology specific to the original research domains. In 
addition, there are thousands of algorithms with different 
functionality, supporting diverse input and output formats, 
written in different languages, packaged as algorithm or 
tool plug-ins, having different licenses, and developed in 
diverse projects by domain experts from any domain of 
science. Domain experts clearly need effective means by 
which to find those datasets and algorithms that are 
relevant for their work, in order to bundle them into 
efficient workflows and relate the results to existing works. 
Scholarly marketplaces that might resemble Flickr or 
YouTube can be employed to help ease the sharing, 
navigation, and utilization of scholarly datasets and 
algorithms. They would reinforce existing reputation 
mechanisms, e.g., by providing simple ways to cite and 
acknowledge users who share, highlighting most 
downloaded and highly rated contributions, and offering 
other means by which to make datasets and algorithms, 
workflows, and tutorials part of a valued scholarly record. 

4. OUTLOOK  
Today, CIShell/OSGi is at the core of several different 
tools and cyberinfrastructures (see discussion section 2.4). 
Most interestingly, a number of other projects have recently 
adopted OSGi (and in one case, CIShell). Those projects 
include: 
 
Cytoscape (http://www.cytoscape.org)—led by Trey Ideker 
at University of California, San Diego—is an open source 
bioinformatics software platform for visualizing molecular 
interaction networks and integrating these interactions with 
gene expression profiles and other state data [15]. Inspired 
by a workshop on Software Infrastructures in July 2007 [5], 
Mike Smooth and Bruce W. Herr implemented a basic 
proof-of-concept OSGi-based Cytoscape core in October 
2007. First OSGi bundles are available at 
http://chianti.ucsd.edu/svn/core3. Once the new 
Cytoscvope core is implemented, it will become much 
easier to share plug-ins between the NWB tool and 
Cytoscape, thereby extending the functionality and utility 
of both. 
 
Taverna Workbench (http://taverna.sourceforge.net)—
developed by the myGrid team (http://www.mygrid.org.uk) 
and led by Carol Goble at University of Manchester, United 
Kingdom—is a suite of free open source software tools for 
designing and executing workflows [12]. Taverna allows 
users to integrate many different software tools, including 
more than 30,000 Web services from diverse domains such 
as chemistry, music, and social sciences. The workflows 
are designed in Taverna Workbench and can then be run on 
a Taverna Engine, either within the Workbench, on an 
external server, within a portal, or on a computational grid. 
Taverna has an extensible and flexible architecture with 
approximately 20 plug-ins..Currently, Taverna uses a 
Taverna-specific classloader and registry mechanism 
(Raven), but an implementation based on Spring Dynamic 



Modules (which uses OSGi) is under development. The 
myExperiment (http://www.myexperiment.org) social 
website supports finding and sharing of workflows and has 
special support for Taverna workflows [9].  
 
MAEviz (https://wiki.ncsa.uiuc.edu/display/MAE/Home) 
—managed by Shawn Hampton at the National Center for 
Supercomputing Applications (NCSA)—is an open-source, 
extensible software platform which supports seismic risk 
assessment based on the Mid-America Earthquake (MAE) 
Center research in the Consequence-Based Risk 
Management (CRM) framework [10]. It uses the Eclipse 
Rich Client Platform (RCP) that includes Equinox, a 
component framework based on the OSGi standard 
(https://wiki.ncsa.uiuc.edu/display/MAE/OSGI+Plug-ins). 
 
TEXTrend (http://www.textrend.org)—led by George 
Kampis at Eötvös University, Hungary—develops a 
framework for the easy and flexible integration, 
configuration, and extension of plug-in-based components 
in support of natural language processing (NLP), 
classification/mining, and graph algorithms for the analysis 
of business and governmental text corpuses with an 
inherently temporal component [13]. TEXTrends recently 
adopted OSGi/CIShell for the core architecture. The first 
plug-ins include the Unstructured Information Management 
Architecture (UIMA) (http://incubator.apache.org/uima); 
the data-mining, machine-learning, classification, and 
visualization toolset WEKA 
(http://www.cs.waikato.ac.nz/ml/weka); Cytoscape; 
Arff2xgmml converter; R (http://www.r-project.org) via 
iGgraph and scripts (http://igraph.sourceforge.net); yEd 
(http://www.yworks.com); and the Cfinder clique 
percolation analysis and visualization tool 
(http://www.cfinder.org). TEXTrend extended CIShell’s 
workflow support and offers the first Web services.  
 
As the functionality of OSGi/CIShell-based software 
frameworks improves, and as the number and diversity of 
dataset and algorithm plug-ins increases, so too will the 
capabilities of custom tools or macroscopes continue to 
proliferate and expand.  
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Figure 1: The Network Workbench Tool interface and two visualizations of the same network dataset using an algorithm plug-in 
and the GUESS tool plug-in.  
 



 
 
Figure 2: Results of three Sci2 tool workflows. 
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