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Abstract 
 
Identifying fundamental drivers of science and developing predictive models to capture its 
evolution are instrumental for the design of policies that can improve the scientific enterprise, 
from enhanced career paths for scientists, to improved performance evaluation for 
organizations hosting research, to discovery of novel effective funding vehicles, and even 
identification of promising regions along the scientific frontier. Science of science uses large-
scale data on the production of science to search for universal as well as domain-specific 
patterns. Here we review recent developments in this transdisciplinary field. 
 
 
The deluge of digital data on scholarly output offers unprecedented opportunities to 
explore patterns characterizing the structure and evolution of science. Science of 
Science (SciSci) places the practice of science itself under the microscope, attaining a 
new quantitative understanding of the genesis of scientific discovery, creativity, and 
practice, and developing tools and policies aimed at accelerating scientific progress. 
 
The emergence of SciSci has been driven by two key factors. The first is data 
availability. In addition to the proprietary Web of Science, the first historic citation 
index (1), today multiple data sources are available (Scopus, PubMed, Google 
Scholar, Microsoft Academic, USPTO, etc.), some freely accessible, covering 



	 2	

millions of data points pertaining to scientists and their output, capturing research 
from all over the world and all branches of science. Second, SciSci has benefited from 
an influx of, and collaborations among, natural, computational and social scientists 
who have developed new Big Data-based capabilities and enabled critical tests of 
generative models that aim to capture the unfolding of science, its institutions and 
workforce. 
 
One distinctive characteristic of the emerging SciSci is how it breaks down 
disciplinary boundaries.  SciSci integrates findings and theories from multiple 
disciplines and utilizes a wide range of data and methods. From scientometrics it 
takes the idea of measuring science from large-scale data sources, from the sociology 
of science it adopts theoretical concepts and social processes, and from innovation 
studies pathways through which science contributes to invention and economic 
change. SciSci relies on a broad collection of quantitative methods, from descriptive 
statistics and data visualization to advanced econometric methods, network science 
approaches and machine learning algorithms, mathematical analysis and computer 
simulation, including agent-based modeling. 
 
The value proposition of SciSci hinges on the hypothesis that with a deeper 
understanding of the factors behind successful science, we can enhance the prospects 
of science as a whole to more effectively address societal problems.  
 
 
Networks of scientists, institutions and ideas 
 
Contemporary science is a dynamical system of undertakings driven by complex 
interactions between social structures, knowledge representations and the natural 
world. Scientific knowledge is constituted by concepts and relations embodied in 
research papers, books, patents, software, and other scholarly artifacts, organized into 
scientific disciplines and broader fields. These social, conceptual and material 
elements are connected through formal and informal flows of information, ideas, 
research practices, tools and samples. Science can thus be described as a complex, 
self-organizing and constantly evolving multi-scale network.  
 
Early studies discovered an exponential growth in the volume of scientific literature 
(2), a trend that continues with an average doubling period of 15 years (Fig. 1). Yet, it 
would be naïve to equate the growth of the scientific literature with the growth of 
scientific ideas. Changes in the publishing world, both technological and economic, 
have led to increasing efficiency in the production of publications. Moreover, new 
publications in science tend to cluster in discrete areas of knowledge (3). Large-scale 
text analysis, using phrases extracted from titles and abstracts to measure the 
cognitive extent of the scientific literature, have found that the conceptual territory of 
science expands linearly with time. In other words, while the number of publications 
grows exponentially, the space of ideas expand only linearly, a much slower process 
(Fig. 1) (4).  
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Figure 1. Growth of science. (A) Annual production of scientific articles indexed in the Web 
of Science (WoS) database. (B) Growth of ideas covered by articles indexed in the WoS. This 
was determined by counting unique title phrases (concepts) in a fixed number of articles (4).  
 
 
Frequently occurring words and phrases in article titles and abstracts propagate via 
citation networks, punctuated by bursts corresponding to the emergence of new 
paradigms (5). By applying network science methods to citation networks, researchers 
are able to identify communities comprised by subsets of publications that frequently 
cite one another (6). These communities often correspond to groups of authors 
holding a common position regarding specific issues (7) or working on the same 
specialized subtopics (8).  Recent work focusing on biomedical science has illustrated 
how growth of the literature reinforces these communities (9). As new papers are 
published, associations (hyperedges) between scientists, chemicals, diseases and 
methods (“things”, which are the nodes of the network) are added. Most new links fall 
between things only one or two steps away from each other, implying that when 
scientists choose new topics, they prefer things directly related to their current 
expertise, or that of their collaborators. This densification suggests that the existing 
structure of science may constrain what will be studied in the future.  
 
Densification at the boundaries of science is also a signal of transdisciplinary 
exploration, fusion, and innovation. A lifecycle analysis of eight fields (10) shows 
that successful fields undergo a process of knowledge and social unification that leads 
to a giant connected component in the collaboration network, corresponding to a 
sizeable group of regular coauthors. A model in which scientists choose their 
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collaborators via random walks on the coauthorship network successfully reproduces 
author productivity, the number of authors per discipline and the interdisciplinarity of 
papers and authors (11).  
 
 
Problem selection 
 
How do scientists decide which research problems to work on? Sociologists of 
science have long hypothesized that these choices are shaped by an ongoing tension 
between productive tradition and risky innovation (12, 13). Scientists who adhere to a 
research tradition in their domain often appear productive by publishing a steady 
stream of contributions advancing a focused research agenda. But a focused agenda 
may limit a researcher’s ability to sense and seize opportunities for staking out new 
ideas required to grow the field’s knowledge. For example, a case study focusing on 
biomedical scientists choosing novel chemicals and chemical relationships shows that 
as fields mature researchers tend to focus increasingly on established knowledge (3). 
Although an innovative publication tends to result in higher impact than a 
conservative one, high-risk innovation strategies are rare, as the additional reward 
does not compensate for the risk of failure to publish at all. Scientific awards and 
accolades appear to function as primary incentives to resist conservative tendencies 
and encourage betting on exploration and surprise (3). Despite the many factors 
shaping what scientists work on next, macroscopic patterns that govern changes in 
research interests along scientific careers follow highly reproducible patterns, 
documenting a high degree of regularity underlying scientific research and individual 
careers (14). 
 
 
Scientists’ choice of research problems affects primarily their individual careers and 
the careers of those reliant on them. Scientists’ collective choices, however, determine 
the direction of scientific discovery as a whole (Fig. 2). Conservative strategies (15) 
serve individual careers well, but are less effective for science as a whole. Such 
strategies are amplified by the file drawer problem (16): negative results, at odds with 
established hypotheses, are rarely published, leading to a systemic bias in published 
research and the canonization of weak and sometimes false facts (17). Indeed, more 
risky hypotheses may have been tested by generations of scientists, but only those 
successful enough to result in publications are known to us. One way to alleviate this 
conservative trap is to urge funding agencies to proactively sponsor risky projects that 
test truly unexplored hypotheses and take on special interest groups advocating for 
particular diseases. Measurements show that the allocation of biomedical resources in 
the U.S. is more strongly correlated to previous allocations and research than to the 
actual burden of diseases (18), highlighting a systemic misalignment between 
biomedical needs and resources. This misalignment casts doubts on the degree to 
which funding agencies, often run by scientists embedded in established paradigms, 
are likely to influence the evolution of science without introducing additional 
oversight, incentives and feedback. 
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Figure 2. Choosing experiments to accelerate collective discovery. The average efficiency 
rate for global strategies to discover new, publishable chemical relationships, estimated from 
all MEDLINE-indexed articles published in 2010. This model does not take into account 
differences in the difficulty or expense of particular experiments. (A) The efficiency of a 
global scientific strategy is expressed by the average number of experiments performed 
(vertical axis) relative to the number of new, published biochemical relationships (horizontal 
axis), which correspond to new connections in the published network of biochemicals co-
occurring in MEDLINE-indexed articles. Compared strategies include randomly choosing 
pairs of biochemicals, the global strategy inferred from all scientists publishing MEDLINE 
articles, and optimal strategies for discovering 50% and 100% of the network. Lower values 
on the vertical axis indicate higher efficiency strategies. The actual strategy used by science 
as a system is not optimal for discovery. (B) The actual, estimated search process illustrated 
on a hypothetical network of chemical relationships, averaged from 500 simulated runs of that 
strategy. The strategy swarms around a few “important”, highly connected chemicals, 
whereas optimal strategies are much more even and less likely to “follow the crowd” in their 
search across the space of scientific possibilities. After Ref. (15). 
 
Novelty 
 
Analyses of publications and patents consistently reveal that rare combinations in 
scientific discoveries and inventions tend to result in outcomes that garner higher 
citation rates (3). Interdisciplinary research is an emblematic recombinant process 
(19), hence the successful combination of previously disconnected ideas and 
resources that is fundamental to interdisciplinary research often violates expectations 
and leads to novel ideas with high impact (20). Nevertheless, evidence from grant 
applications shows that, when faced with new ideas, expert evaluators systematically 
give lower scores to truly novel (21-23) or interdisciplinary (24) research proposals. 
 
The highest-impact science is primarily grounded in conventional combinations of 
prior work, yet it simultaneously features unusual combinations (25, 26). Papers of 
this type are twice as likely to receive high citations (26). In other words, a balanced 
mixture of new and established elements is the safest path towards successful 
reception of scientific advance. 
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Career dynamics 
 
Individual academic careers unfold in the context of a vast market for knowledge 
production and consumption (27). Consequently, scientific careers have been 
examined not only in terms of individual incentives and marginal productivity (i.e., 
relative gain versus effort) (28), but also institutional incentives (29, 30) and 
competition (31). This requires combining large repositories of high-resolution 
individual, geographic, and temporal metadata (32), to construct representations of 
career trajectories that can be analyzed from different perspectives. For example, one 
study finds that funding schemes tolerant of early failure, which reward long-term 
success are more likely to generate high impact publications than grants subject to 
short review cycles (30). Interacting systems with competing timescales are a classic 
problem in complex systems science. The multi-faceted nature of science is 
motivation for generative models that highlight unintended consequences arising form 
science policy. For example, models of career growth show that non-tenure (short-
term) contracts are responsible for productivity fluctuations, which often result in a 
sudden career death (28). 
 
Gender inequality in science remains prevalent and problematic (33). Women have 
less publications (34-36), collaborators (37), funding (38) and are penalized in hiring 
decisions when compared to equally qualified men (39). The causes of this gap are 
still unclear. Intrinsic differences in productivity rates and career length can explain 
the differences in collaboration patterns (37) and hiring rates (34) between male and 
female scientists. On the other hand, experimental evidence shows that biases against 
women occur at very early career stages. When gender was randomly assigned among 
the CVs of a pool of applicants, the hiring committee systematically penalized female 
candidates (39). Most studies so far have focused on relatively small samples. 
Improvements in compiling large scale datasets of scientific careers, which leverage 
information from different sources, e.g. publication records, grant applications and 
awards, will help us gain deeper insight into the causes of inequality, identify causes, 
and motivate models that can inform policy solutions. 
 
Scientists’ mobility is another important factor offering diverse career opportunities. 
Most mobility have focused on quantifying the brain drain and gain of a country or a 
region (40-42), especially following policy changes. Research on individual mobility 
and its career effect remains scant, however, primarily due to the difficulty of 
obtaining longitudinal information about the movements of many scientists, 
accounting for the reasons underlying mobility decisions. Scientists who left their 
country of origin outperformed scientists that did not relocate, according to the impact 
factor of journals that published scientist’s work, a finding that may be rooted in a 
selection bias that offers better scientists with better career opportunities (43). 
Moreover, scientists tend to move between institutions of similar prestige (44). 
Nevertheless, when examining changes in impact associated with each move, 
quantified by citations, no systematic increase or decrease was found, not even when 
scientists moved to an institution of significantly higher or lower rank (45). In other 
words, it is not the institution that creates the impact, it is the individual researchers 
that make an institution. 
 
Another potentially important career factor is reputation, and the dilemma it poses for 
manuscript review, proposal evaluation and promotion decisions. The reputation of 
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paper authors, measured by the total citations to their previous output, markedly 
boosts the number of citations collected by that paper in the first years after 
publication (46). Following this initial phase, however, impact depends on the 
reception of the work by the scientific community. This finding, along with Ref. (45), 
suggests that, for productive scientific careers, reputation is less of a critical driver for 
success than talent, hard work and relevance. This is at odds with artistic careers, 
where future success is guaranteed once the artists land in the top artistic venues. 
 
A policy-relevant question is whether creativity and innovation depend on age or 
career stage. Decades of research on outstanding researchers and innovators 
concluded that major breakthroughs take place relatively early in a career, with a 
median age of 35 (47). In contrast, recent work shows that this well-documented 
propensity of early-career discoveries is fully explained by productivity, which is high 
in the early stages of a scientist’s career and drops later (48). In other words, there are 
no age patterns in innovation: a scholar’s most cited paper can be any of his or her 
papers, independently of the age or career stage when it is published (Fig. 3). A 
stochastic model of impact evolution also indicates that breakthroughs result from a 
combination between the ability of a scientist and the luck to pick a problem with a 
high potential (48). 
 
 
 

 

Figure	3.	Impact	in	scientific	careers.	(A)	Publication	record	of	three	Nobel	Laureates	
in	 physics.	 The	 horizontal	 axis	 indicates	 the	 number	 of	 years	 after	 a	 Laureate’s	 first	
publication	 and	 each	 circle	 corresponds	 to	 a	 research	 paper,	 the	 height	 of	 the	 circle	
representing	 the	paper’s	 impact,	 quantified	by	𝑐!",	 number	 of	 citations	 after	 10	 years.	
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The	highest	 impact	paper	of	 a	Laureate	 is	denoted	with	an	orange	circle.	These	Nobel	
Laureates	 published	 their	 highest	 impact	work	 at	 different	 stages	 of	 their	 career.	 (B)	
Histogram	 of	 the	 occurrence	 of	 the	 highest	 impact	 paper	 in	 a	 scientist’s	 sequence	 of	
publications,	 calculated	 for	 10,000	 scientists.	 The	 flatness	 of	 the	 histogram	 indicates	
that	 the	 highest	 impact	 work	 can	 be,	 with	 the	 same	 probability,	 anywhere	 in	 the	
sequence	 of	 papers	 published	 by	 a	 scientist	 –	 it	 could	 be	 the	 first	 publication,	 could	
appear	in	her	mid-career	or	could	be	the	last	publication	(random	impact	rule)	(48).	

 

Team science 
  
During past decades there has been increased reliance on teamwork, representing a 
fundamental shift in the way science is done. A study of the authorship of 19.9 
million research articles and 2.1 million patents reveals a nearly universal shift toward 
teams in all branches of science (49). For example, in 1955 science and engineering 
teams authored about the same number of papers as single authors. Yet by 2013, the 
fraction of team-authored papers increased to 90 percent (50) (Fig. 4).  

 
 
Figure 4. Size and impact of teams. Mean team size has been steadily growing over the last 
century. The dashed line refers to the mean number of coauthors over all papers, the black 
one considers just those papers receiving more citations than the average for the field. Black 
curves are systematically above the dashed ones, meaning that high impact work is more 
likely to be produced by large teams than by small ones.  Each panel corresponds to one of 
the three main disciplinary groups of papers indexed in the Web of Science: Science and 
Engineering (A); Social Sciences (B); Arts and Humanities (C). 
 
 
Today a team-authored paper in science and engineering is 6.3 times more likely to 
receive 1,000 citations or more than a solo-authored paper, a difference that cannot be 
explained by self-citations (49, 51). One possible reason is a team's ability to come up 
with more novel combinations of ideas (26), or the production of resources that are 
later used by others (e. g., genomics). Indeed, measurements show that teams are 38% 
more likely than solo authors to insert novel combinations into familiar knowledge 
domains, supporting the premise that teams can bring together different specialties, 
effectively combining knowledge that prompts scientific breakthroughs. Having more 
collaborations means greater visibility through a larger number of coauthors, who will 
likely introduce the work to their networks, an enhanced impact that may partially 
compensate for the fact that in a team setting credit must be shared with many 
colleagues (28). 
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Despite the fact that work from large teams receives, on average, more citations, 
researchers working alone or in small teams may actually cover a wider cognitive 
extent than large teams (4). Consequently, large teams tend to focus on a subset of 
well-established problems, but small teams appear to push the frontiers of science into 
new areas that may receive subsequent exploration by larger teams. Thus it may be 
important to fund and foster teams of all sizes, in order to temper the 
bureaucratization of science (27). 
 
Teams are also growing in size, increasing by an average of 17% per decade (49, 52), 
a trend underlying a fundamental change in team compositions. Scientific teams 
include both small stable “core” teams and large dynamically changing extended 
teams (53). The increasing team size in most fields is driven by faster expansion of 
extended teams, which begin as small core teams, but subsequently attract new 
members through a process of cumulative advantage anchored by productivity. Size is 
a crucial determinant of team survival strategies: small teams survive longer if they 
maintain a stable core, but larger teams persist longer if they manifest a mechanism 
for membership turnover (54).  
 
As science has accelerated and grown increasingly complex, the instruments required 
to expand the frontier of knowledge have increased in scale and precision. The tools 
of the trade become unaffordable to most individual investigators, but also to most 
institutions. Collaboration was a critical solution, pooling resources to scientific 
advantage. The Large Hadron Collider, the world’s largest and most powerful particle 
collider at CERN, would have been unthinkable without collaboration, requiring over 
10,000 scientists and engineers from over 100 countries. There is, however, a tradeoff 
with increasing size that affects the value and risk associated with ‘big science’ (2). 
While it may be possible to solve larger problems, the burden of reproducibility may 
require duplicating initial efforts, which may not be practically or economically 
feasible. 
 
Collaborators can have a big effect on scientific careers. According to recent studies 
(55, 56) scientists who lose their star collaborators experience a significant drop in 
their productivity, especially if the lost collaborator was a regular coauthor. 
Publications involving extremely strong collaborators gain on average 17% more 
citations, pointing to the value of career partnership drawing on the benefits of risk 
and reward sharing (57).  
 
Given the increasing number of authors on the average research paper, who should 
and does gain the most credit? The canonical theory of credit (mis)allocation in 
science is the Matthew effect (58), where scientists of higher statuses involved in joint 
work receive outsized credit for their contributions. Properly allocating individual 
credit for a collaborative work is difficult because we cannot easily distinguish 
individual contributions (59). By inspecting the co-citation patterns of the coauthors’ 
publications, we can determine the fraction of credit the community assigns to each 
coauthor in a publication (60).  
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Citation dynamics 
 
Scholarly citation remains the dominant measurable unit of credit in science. Given 
the reliance of most impact metrics on citations (61-64), the dynamics of citation 
accumulation have been scrutinized by generations of scholars. From foundational 
work by Price (65), we know that the distribution of citations for scientific papers is 
highly skewed: many papers are never cited, but seminal papers can accumulate 
10,000 or more citations. This uneven citation distribution is a robust, emergent 
property of the dynamics of science, and holds when papers are grouped by institution 
(66). If the number of citations of a paper is divided by the average number of 
citations collected by papers in the same discipline and year, the distribution of the 
resulting score is essentially indistinguishable for all disciplines (67, 68) (Fig. 5A). 
This means that we can compare the impact of papers published in different 
disciplines by looking at their relative citation values. For example, a paper in 
mathematics collecting 100 citations represents a higher disciplinary impact than a 
paper in microbiology with 300 citations. 
 
The tail of the citation distribution, capturing the number of high impact papers, sheds 
light on the mechanisms that drive the accumulation of citations. Recent analyses 
show that it follows a power law (69-71). Power-law tails can be generated via a 
cumulative advantage process (72), known as preferential attachment in network 
science (73), suggesting that the probability to cite a paper grows with the number of 
citations that it has already collected. Such a model can be augmented with other 
characteristic features of citation dynamics, like the obsolescence of knowledge, 
decreasing the citation probability with the age of the paper (74-77), and a fitness 
parameter, unique to each paper, capturing the appeal of the work to the scientific 
community (75, 76). Only a tiny fraction of papers deviate from the pattern described 
by such a model – some of which are called sleeping beauties, as they receive very 
little attention for decades after publication, until they suddenly receive a burst of 
attention and citations (78, 79).  
 
The generative mechanisms described above can be used to predict the citation 
dynamics of individual papers. One predictive model (75) assumes that the citation 
probability of a paper depends on the number of previous citations, an obsolescence 
factor and a fitness parameter (Fig. 5B, 5C). For a given paper one can estimate the 
three model parameters by fitting the model to the initial portion of the citation 
history of the paper, and the long-term impact of the work can be extrapolated (75).  
Other studies have identified predictors of the citation impact of individual papers 
(80), like journal impact factor (70). It has been suggested that the future h-index (81) 
of a scientist can be accurately predicted (82), although the predictive power is 
reduced when accounting for the scientists’ career stage and the cumulative non-
decreasing nature of the h-index (83). Eliminating inconsistencies in the use of 
quantitative evaluation metrics in science is crucial, and highlights the importance of 
understanding the generating mechanisms behind commonly used statistics. 
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Figure 5. Universality in citation dynamics.  (A) The citation distributions of papers 
published in the same discipline and year lie on the same curve for most disciplines, if the raw 
number of cites c of each paper is divided by the average number of cites c0 over all papers in 
that discipline and year. The dashed line is a lognormal fit. After Ref. (67). (B) Citation 
history of four papers published in Physical Review in 1964, selected for their distinct 
dynamics, displaying a ‘jump-decay’ pattern (blue); delayed peak (magenta); attracting a 
constant number of citation over time (green), or acquiring an increasing number of citations 
each year (red). (C) Citations of an individual paper are determined by three parameters: 
fitness λi, immediacy µi, and longevity σi. By rescaling the citation history of each paper in 
(B) by the appropriate (λ, µ, σ) parameters, the four papers collapse onto a single universal 
function, which is the same for all disciplines. After Ref. (75). 
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Outlook 
 
Despite the discovery of universals across science, substantial disciplinary differences 
in culture, habits, and preferences make some cross-domain insights difficult to 
appreciate within particular fields and associated policies challenging to implement. 
The questions, data and skills required by each discipline suggest that we may gain 
further insights from domain-specific SciSci studies that model and predict 
opportunities adapted to the needs of each field. For young scientists, the results of 
SciSci offer actionable insights about past patterns, helping guide future inquiry 
within their disciplines (Box 1). 
 
The contribution of SciSci is a detailed understanding of the relational structure 
between scientists, institutions and ideas, a crucial starting point that facilitates the 
identification of fundamental generating processes. Together, these data-driven efforts 
complement contributions from related research domains such as the economics (29) 
and sociology of science (58, 84). Causal estimation is a prime example, in which 
econometric matching techniques demand and leverage comprehensive data sources 
in the effort to simulate counterfactual scenarios (30, 42). Assessing causality is one 
of the most needed future developments in SciSci: many studies reveal strong 
associations between structure and outcomes but the extent to which a specific 
structure “causes” an outcome remains unexplored. Engaging in tighter partnerships 
with experimentalists, SciSci will be able to better identify associations discovered 
from models and large scale data that have causal force to enrich their policy 
relevance. But experimenting on science may be the biggest challenge SciSci is yet to 
face. Indeed, running randomized, controlled trials that can alter outcomes of 
individuals or institutions of science, which are mostly supported by tax dollars, is 

Box 1. Lessons from Science of Science. 
 
1. Innovation and tradition : Left bare, truly innovative and highly 

interdisciplinary ideas may not fulfill maximum scientific impact. To 
enhance their impact, place novel ideas in the context of established 
knowledge. Ref. 26. 

2. Persistence : You are never too old to make a discovery, as long as you 
stay productive. Ref. 48. 

3. Col laboration:  Research is shifting to teams, so engaging in 
collaboration is beneficial. Small teams may be more innovative, but big 
teams have more impact. Ref. 4. 

4. Credit : The quantity of effort and the ideas you provide to an article does 
not determine the credit you receive for a discovery. Most credit will go to 
the coauthors with the most consistent track record in the domain of the 
publication Ref. 60. 

5. Peer review:  The publication and impact of each paper is influenced by 
the reputation of its authors. Double-blind review could mitigate the effect 
of reputation bias in assessing a discovery. Ref. 46. 

6. Funding:  While review panels acknowledge innovation, they tend to 
discount it. Funding agencies should ask reviewers to assess innovation, 
not only expected success. Ref. 24. 
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bound to criticisms and pushbacks (85). Hence we expect quasi-experimental 
approaches to prevail in SciSci investigations in near future.  
 
Most SciSci research focuses on publications as primary data sources, implying that 
insights and findings are limited to ideas successful enough to merit publication in the 
first place. Yet most scientific attempts fail, sometimes spectacularly. Given that 
scientists fail more often than they succeed, knowing when, why and how an idea 
fails is essential in our attempts to understand and improve science. Such studies 
could provide meaningful guidance towards the reproducibility crisis and help us 
account for the file drawer problem. They could also substantially further our 
understanding of human imagination by revealing the total pipeline of creative 
activity.  
 
Science often behaves like an economic system with a one-dimensional “currency” of 
citation counts. The one-dimensional performance measure of citation counts creates 
a hierarchical system, in which the “rich-gets-richer” dynamics suppress the spread of 
new ideas, particularly those from junior scientists and those who do not fit within the 
paradigms supported by specific fields. Science can be improved by broadening the 
number and range of performance indicators. The development of alternative metrics 
of web (86) and social media (87) activity and of societal (88) and economic (89) 
impact is critical in this regard. Other measurable dimensions include the information 
(e.g., data) that scientists share with competitors (90), the help they offer to their peers 
(91) and their reliability as reviewers of their peers’ works (92). But with a profusion 
of metrics, more work is needed to understand what each of them does and does not 
capture, to ensure a meaningful interpretation and avoid misuse. SciSci makes an 
essential contribution by providing models that offer a deeper understanding of the 
mechanisms that govern performance indicators in science. 
 
The integration of citation-based metrics with alternative indicators will promote 
pluralism and enable new dimensions of productive specialization, in which scientists 
can be successful in different ways. The system of science is an ecosystem, which 
requires not publications as output, but also communicators and teachers, visionaries 
and detail-oriented experts. We need individuals who can ask novel field-altering 
questions, as well as those who can answer them. It would benefit science if curiosity, 
creativity and intellectual exchange, particularly regarding the societal implications 
and applications of science and technology, are better appreciated and incentivized in 
the future. A more pluralistic approach could reduce duplicity and make science 
flourish for society. 
 
An issue that SciSci can seek to improve is the allocation of science funding. The 
current peer review system is subject to biases and inconsistencies (93). Several 
alternatives have been proposed, such as the random distribution of funding (94), 
person-directed funding that does not involve proposal preparation and review (30), 
opening the proposal review process to the entire online population (95) or removing 
human reviewers altogether by allocating funds equally, randomly, or through a 
performance measure (96), or through scientist crowd-funding (97). 
 
To predict future scientific practice and advance, a critical area of future research for 
SciSci concerns the integration of machine learning and artificial intelligence in a way 
that involves machines and minds distinctly working together. Such mind+machine 
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partnerships have improved evidence-based decision-making in a wide range of 
health, economic, social, legal and business problems (98-100) How can science be 
improved with mind+machine partnerships and what arrangements are most 
productive? These questions promise to help us understand the science of the future.  
They prompt reexamination of answers about how teams and networks form; how 
students can most successfully be trained and mentored; how the rate of 
breakthroughs might be sped up by reimagining the division of labor between the 
wisdom and intuition of individual scientists, and the ability of machines to ingest and 
process massive amounts of “mashed up” physical, biological and social data. These 
studies will need to incorporate the interdisciplinary approach of SciSci to 
simultaneously explore the social, computational, and material aspects of 
mind+machine partnerships and their spillovers into teamwork, training, and 
discovery. 
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