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Abstract Historically, science of science (Sci2) studies have been performed by single

investigators or small teams. As the size and complexity of data sets and analyses scales

up, a ‘‘Big Science’’ approach (Price, Little science, big science, 1963) is required that

exploits the expertise and resources of interdisciplinary teams spanning academic, gov-

ernment, and industry boundaries. Big Sci2 studies utilize ‘‘big data’’, i.e., large, complex,

diverse, longitudinal, and/or distributed datasets that might be owned by different stake-

holders. They apply a systems science approach to uncover hidden patterns, bursts of

activity, correlations, and laws. They make available open data and open code in support of

replication of results, iterative refinement of approaches and tools, and education. This

paper introduces a database-tool infrastructure that was designed to support big Sci2

studies. The open access Scholarly Database (http://sdb.cns.iu.edu) provides easy access to

26 million paper, patent, grant, and clinical trial records. The open source Sci2 tool (http://

sci2.cns.iu.edu) supports temporal, geospatial, topical, and network studies. The scalability

of the infrastructure is examined. Results show that temporal analyses scale linearly with

the number of records and file size, while the geospatial algorithm showed quadratic

growth. The number of edges rather than nodes determined performance for network based

algorithms.
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Introduction and related work

Many science of science (Sci2) studies use heterogeneous datasets and advanced data

mining and visualization algorithms to advance our understanding of the structure and

dynamics of science. The quality of results depends on the quality and coverage of the data

used. Data cleaning and preprocessing can easily consume 80 % or more of the overall

project effort and budget. As the number of data records grows, different types of tools and

expertise are required to handle the data. MS Excel can load a maximum of 1,048,576 rows

of data by 16,384 columns per sheet. MS Access file sizes cap at 2 GB, including indices,

forms, and macros along with the data. Larger datasets need to be stored in a database

designed with scalability in mind. As the diversity of datasets increases, the structures of

different datasets need to be aligned. As data covers more and more years, dealing with

format changes becomes necessary. Many studies require extensive preprocessing and

augmentation of the data, such as identification of unique records or record values, geo-

coding of records in preparation for geospatial analysis, or the extraction of networks

for network studies. For many researchers, the effort to compile ready-to-analyze-and-

visualize data is extremely time consuming and challenging and sometimes simply

insurmountable.

Many datasets relevant for Sci2 studies, e.g., papers, patents, grants, and clinical trials,

are freely available by different providers. However, they are stored in separate silos with

diverse interfaces of varying usability that deliver data in many different formats. Research

projects seeking to use one or many of these data sources face major data access, inte-

gration, and unification challenges. Indiana University’s Scholarly Database (SDB),

originally launched in 2005, makes over 26 million scholarly records freely available via a

unified interface and in data formats that are easy to use and well documented. In the last 4

years, SDB has answered thousands of queries and delivered millions of records to users

around the globe. The 2012 update to the SDB improves the quality of data offered and

integrates new humanities and clinical trial datasets.

Equipped with high quality, high coverage data in standard data formats, tools that scale

in terms of the number of records that can be read and processed are needed to truly make

sense of big data (Robertson et al. 2009). While most tools work well for micro and meso

level studies (up to 100,000 records), few scale to macro level big-data studies with

millions or even billions of records. Another type of scalability relates to the ease of usage

and ease of interpretation of big data visualizations. How to best communicate temporal

trends or burst of activity over a 100 year time span? How to depict the geospatial location

of millions of records in a scalable fashion? Can the topical evolution of massive document

datasets be communicated to a general audience? Most visualizations of million node

networks resemble illegible spaghetti balls—do advanced network analysis algorithms

scale and help to derive insights?

Frequently, different types of analysis have to be applied to truly understand a natural,

social, or technological system. Examples are temporal studies that answer WHEN

questions, geospatial studies that answer WHERE questions and draw heavily on research

in cartography, topical studies that use linguistic analysis to answer WHAT questions, and

network studies that employ algorithms and techniques developed in social sciences,

physics, information science and other domains to answer WITH WHOM questions.

However, most existing systems support only one general type of analysis and visualiza-

tion and many require programming skills. For example, four of the top 20 data visuali-

zation tools listed by.net in September of 2012 support charts and graphs while six support

geospatial maps exclusively (Suda 2012). Only the D3 (data-driven documents) and
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Raphaël JavaScript libraries, the Google Chart API, and R support a larger array of charts,

graphs, and maps yet all three require programming or scripting skills that most users do

not possess. Excel might be the only tool on the list that can be used by a large number of

non-programmers. A listing of tools commonly used in Sci2 studies can be found at http://

sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/8.2?Network?Analysis?and?Other?Tools

but most support a very limited range of workflows (Cobo et al. 2011).

This paper presents a database-tool infrastructure that applies a divide-and-conquer

approach to support big Sci2 studies. It combines an online database supporting bulk

download of data in easy to process formats with a plug-and-play tool to read, clean,

interlink, mine, and visualize data using easy to manipulate graphical user interfaces. An

earlier version of this paper was published in the proceedings of the International Society

of Scientometrics and Infometrics Conference in Vienna (Light et al. 2013).

The remaining paper is organized as follows: the next two sections present the database

and tool functionalities. We then present a sample workflow, complete from initial ques-

tion to data acquisition to visualization and interpretation. Subsequently, we test and

discuss the scalability of data readers, preprocessing, analysis and visualization algorithms.

We conclude the paper with a discussion of the presented work and an outlook to future

work.

The Scholarly Database (SDB)

SDB was created in 2005 to provide researchers and practitioners easy access to various

datasets offered by different publishers and agencies (LaRowe et al. 2009). The SDB is

implemented using PostgreSQL 8.4, a free and open source relational database manage-

ment system. Since the introduction of version 8.1, PostgreSQL developers have been

focused on improving the scalable performance of the system and this software is now

employed by many companies to provide large-scale data solutions, including Yahoo!,

Sony Online and Skype. Today, the SDB provides easy access to paper, patent, grant, and

clinical trials records authored by 13.8 million people in 208 countries (some, such as

Yugoslavia, no longer in existence), interlinked by 58 million patent citation links, and

over 2.5 million links connecting grant awards to publications and patents. As of

November 2012, the SDB features over 26 million records from MEDLINE (19,039,860

records spanning from 1865 to 2010), United States Patent and Trademark Office (USPTO)

patents (4,178,196, 1976–2010), National Institutes of Health (NIH) awards (2,490,837,

1972–2012), National Science Foundation (NSF) awards (453,687, 1952–2010), National

Endowment for the Humanities (NEH) awards (47,197, 1970–2012), and clinical trials

(119,144, 1900–2012).

Unique features of SDB comprise:

• Open access the SDB is composed entirely of open data so there are no copyright or

proprietary issues for the researcher to contend with in its use. Data is provided to

researchers free of charge.

• Ease of use simple user interfaces provide a one-stop data access experience making it

possible for researchers to focus on answering their questions, rather than spending

much time on parsing, searching, and formatting data.

• Federated search by aggregating the data into a single environment, SDB offers a

federated search environment powered by a Solr core. Users can search one, some, or
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all of the available datasets over some or all years using the same set of terms and get a

combined set of results that are ranked by relevance.

• Bulk download most databases do not support downloads and those that do only permit

access to a limited number of records. SDB supports bulk download of data records;

data linkages—co-author, patent citations, grant-paper, grant-patent; burst analysis

files. Users are granted a base number of downloads by default to prevent abuse of the

system, but this number can be extended by request without charge.

• Unified file formats SDB source data comes in different file formats. NIH funding data

is stored in flat files; clinical trials are offered in XML, while patents come in a variety

of formats, depending on the year. Old patents come in a fixed width data format while

newer patents are provided in XML. Much time and effort was spent to normalize this

data into easy-to-use file formats, e.g., comma-delimited tables for use in spreadsheet

programs and common graph formats for network analysis and visualization.

• Well-documented SDB publishes data dictionaries for every dataset offered. Informa-

tion on data provenance, table structure, data types, and individual field comments are

available. In addition, the SDB offers a set of small sample files, giving researchers an

easily usable test-bed for working out their algorithms before committing to analysis of

a larger set.

The SDB Wiki (http://sdb.wiki.cns.iu.edu) provides more information including a user

guide, information on each dataset, and release notes.

The Sci2 tool

The Sci2 tool is a modular toolset specifically designed for the study of science. It supports

the temporal, geospatial, topical, and network analysis and visualization of scholarly

datasets at the micro (individual), meso (local), and macro (global) levels, see screenshot in

Fig. 1, general workflow in Fig. 2 and specific workflows discussed in the ‘‘Scalability

tests’’ section.

The tool’s OSGi/CIShell core architecture makes it possible for domain scientists to

contribute new algorithms written in a variety of programming languages using a plug-and-

play macroscope approach (Börner 2011).

As of November 2012, the Sci2 tool has 171 algorithms, 112 of which are visible to the

user (see Table 1) written in Java, C, C??, and Fortran. In addition, a number of tools

(Gnuplot, GUESS, and Cytoscape) were implemented as plugins and bridges to R and to

Gephi were created, allowing the seamless use of different tools. The Sci2 user interface

and sample map is shown in Fig. 1.

Unique features of Sci2 comprise:

• Open source anybody can examine the source code and advance it.

• Extensive use of well-defined reference systems to improve readability and to support

interpretation, Sci2 uses a number of carefully designed reference systems, see Fig. 3.

Each comes with a title, legend, and a brief ‘‘How to read this visualization’’ section

that provides further details, e.g., on used geospatial projections.

• Interactivity while visualizations of small datasets can be explored interactively,

visualizations of big data are rendered into Postscript files that can be converted to PDF

files and examined using pan and zoom as well as filtered, e.g., by searching for specific

text in the display.
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• Workflows all user actions are recorded in a log file to ensure proper documentation and

easy replicability of workflows that might comprise 15–20 analysis and visualization

algorithms with a range of parameter settings.

• Online documentation all Sci2 plugins as well as major workflows are documented in

the Sci2 Wiki (http://sci2.wiki.cns.iu.edu) together with release notes.

Sample workflow

This sample workflow aims to answer the question: ‘‘What were the emergent topics in

hurricane research during the 2000s?’’ Questions of emergent topics lend themselves well

to burst analysis, which highlights words that appear or increase in frequency in a dataset

over a portion of the time examined. In order to perform burst analysis, records need to

include text as well as a time-stamp.

Data query

On the SDB website, we search for the terms ‘‘hurricane’’ or ‘‘typhoon’’ in the All Text

field, accessing the NSF dataset from 2000 to 2010. The dataset includes 509 grants, the

strongest matches of which are shown in Table 2.

Data download

The SDB offers a variety of tables for download depending on the dataset(s) queried. The

contents of all tables are described via the data dictionary (downloadable at http://wiki.cns.

Fig. 2 General Sci2-based visualization creation workflow (tool-specific tasks in gray)

Table 1 Sci2 algorithm summary tables

Categories Algorithms Examples

Acquisition 5 Google citation user ID search algorithm

Data preparation 13 Extract co-occurrence network

Preprocessing 22 Slice table by time, extract ZIP code

Analysis 47 K-nearest neighbor, Burst Detection

Modeling 4 Watts–Strogatz small world, TARL

R 4 Create an R instance, send a table to R

Visualization 17 Choropleth map, bipartite network graph

Total 112
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iu.edu/display/SDBDOC/NSF?Awards) that is available for all datasets, as seen in Fig. 4.

The required data for this analysis is provided in the master table. The file contains

columns for titles, abstracts and years of publication and can be loaded into the Sci2 tool

for preparation and visualization.

Data preparation

Once the data has been loaded into the Sci2 tool, the first step is to pre-process the text. The

Lowercase, Tokenize, Stem and Stopword routine is designed to normalize text in prepa-

ration for analysis. Initially, the default stopword list included with Sci2 is used. The

Table 2 Highest rated results from a search of the terms ‘‘hurricane’’ or ‘‘typhoon’’ in the NSF database
from 2000 to 2010, as run on 12 November 2013

Source Authors/
creators

Years Titles Score
(out of
1.84)

NSF Eisner 2000 Extratropical linkages to tropical cyclone activity 1.84

MEDLINE Chen et al. 2003 Strategies of disaster response in the health care system
for tropical cyclones: experience following Typhoon
Nari in Taipei City

1.67

MEDLINE Bengtsson 2001 Weather. Hurricane threats 1.46

NSF Ritchie and
Tyo

2007 Enhancing forecasts of tropical cyclone extratropical
transition by statistical pattern recognition

1.34

MEDLINE Schiermeier 2005 Hurricane link to climate change is hazy 1.26

MEDLINE Bohannon
and
Enserink

2005 Hurricane Katrina. Questioning the ‘Dutch solution’ 1.26

MEDLINE Odom-
Forren

2005 Hurricane Katrina 1.26

MEDLINE Witze 2006 Tempers flare at hurricane meeting 1.26

MEDLINE Kerr 2006 Climatology. A tempestuous birth for hurricane
climatology

1.26

MEDLINE Baum and
Fendell

2006 Operational hurricane intensity forecasting 1.26

Fig. 4 SDB download screen, showing datasets, data dictionary and sample files available for download
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normalized dataset is then analysed with the Burst Detection algorithm using default

parameters. This generates a list of bursting topics, with weights, start, and end dates. The

top-20 most highly weighted topics are listed in Table 3.

Some terms, like ‘‘katrina’’ (referring to Hurricane Katrina the deadliest and most

destructive Atlantic tropical cyclone in 2005) that bursts in 2005 are easy to understand,

while others, like ‘‘sger’’ and ‘‘111-5’’ are difficult to interpret. More detailed examination

reveals that ‘‘111-5’’ is the Public Law number of the American Recovery and Rein-

vestment Act that provided funding for a great many NSF proposals in the late 2000s.

Likewise, ‘‘sger’’ refers to the ‘‘Small Grants for Exploratory Research’’ program run by

the NSF. Both burst during 2005 as much funding is devoted to hurricane research in that

year. If desired, the two terms can be excluded from further analysis by modifying the

stopword list. A copy of the original stopword list is made and terms that are undesirable

are added, including ‘‘sger’’, ‘‘111-5’’ ‘‘2009’’ and several other years that appeared later in

the data, as well as terms such as ‘‘grant’’ and ‘‘award’’ that are clearly more mechanical to

the NSF process than relevant to the science conducted. The process is repeated, starting

from textual normalization and the modified results are shown in Table 4.

Table 3 Top bursts in hurricane research (2000–2010) by weight (raw data)

Time Terms Weights Start End Ranks Terms Weights Start End

1 Sger 25.15 2005 2005 11 Law 7.91 2009 2010

2 Katrina 9.92 2005 2005 12 Applic 7.80 2007 2010

3 Sampl 9.83 2005 2005 13 Intens 7.60 2003 2004

4 Orlean 9.16 2005 2005 14 Mississippi 7.57 2005 2006

5 2009 8.86 2009 2010 15 Expect 7.49 2009 2010

6 Wind 8.67 2002 2004 16 Abstract 7.40 2005 2005

7 Aftermath 8.45 2005 2006 17 Complet 7.21 2002 2004

8 111-5 8.24 2009 2010 18 Gulf 7.00 2005 2006

9 Health 8.05 2004 2005 19 Act 6.93 2009 2010

10 Reinvest 8.02 2009 2010 20 Scienc 6.72 2007 2007

Table 4 Top bursts in hurricane research (2000–2010) by weight (refined)

Ranks Terms Weights Start End Ranks Terms Weights Start End

1 Katrina 9.92 2005 2005 11 Complet 7.21 2002 2004

2 Sampl 9.83 2005 2005 12 Gulf 7.00 2005 2006

3 Orlean 9.16 2005 2005 13 Exploratori 6.56 2005 2005

4 Wind 8.67 2002 2004 14 Public 6.46 2009 2010

5 Aftermath 8.45 2005 2006 15 Louisiana 6.33 2005 2005

6 Health 8.05 2004 2005 16 Bring 6.20 2007 2008

7 Applic 7.80 2007 2010 17 Advanc 6.11 2009 2010

8 Intens 7.60 2003 2004 18 Graduat 6.07 2009 2010

9 Mississippi 7.57 2005 2006 19 Approach 5.97 2008 2010

10 Expect 7.49 2009 2010 20 Open 5.75 2008 2010
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Visualization

While further refinement is possible via tweaking the parameters of the algorithm or

making more additions to the stopword file, this dataset reflects the expected impact of

Hurricane Katrina on research in 2005 and is the one that will be visualized here. The

visualization selected is the Temporal Bar Graph, creating bars for each burst over time.

The full visualization, a six page PDF document covering 290 bursts, is too large to

reproduce here, but a portion is shown in Fig. 5. The length of bars indicates the length of

the burst, while area represents the weight of the burst.

This sample has used only a few hundred records from a 1.2 MB file, far from what

would be considered truly big data, but the principles remain consistent regardless of data

size. Subsequently, we present the results of extensive tests that were run to determine the

scalability of key Sci2 tool algorithms and visualizations.

Scalability tests

To demonstrate the scalability of the database and tool, tests were performed using syn-

thetic datasets with pre-defined properties generated in Python and datasets retrieved from

the SDB. All four types of analysis supported by Sci2 were tested: temporal analysis,

geospatial analysis, topical analysis, and network analysis. Initially, we identified work-

flows indicative of these four main types of analysis. From there, we broke down each

workflow into the specific steps (algorithms) involved in the workflow, starting with

loading the data and ending in visualization. For each algorithm, e.g., data reader, analysis,

visualization, we measured (in seconds) the length of time it took for an algorithm to finish

processing. We considered the start of the algorithm to be the point at which the user inputs

his or her parameters (where applicable) and then executes the algorithm. We considered

all algorithms to be finished when the associated data files appeared in the Data Manager

Fig. 5 Excerpt of Temporal Bar Graph of hurricane research bursts (2000–2010)
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and were displayed as complete in the Scheduler. For each test, we calculated the average

for 10 trials. Between trials, we closed down Sci2 in order to minimize any adverse effects

of residual memory. Tests were performed on a common system: an Intel(R) Core(TM)

Duo CPU E8400 3.00 GHz processor and 4.0 GB of memory running a 64bit version of

Windows 7 and a 32bit version of Java 7. Memory allotted to Sci2 was extended to

1,500 MB.

File loading

Synthetic data was used to measure how file loading times vary in terms of number of

records and length of individual record in bytes. Two series of datasets were generated, one

with only 2 rows, a small integer, and a short string and one with 25 rows, a small integer

and 24 short strings, each with increasing numbers of rows. Average loading times over 10

trials are given in Fig. 6. The three largest datasets did not load but returned a Java heap

space error (-TF*). At first glance, there seems to exist a direct relationship between file

size and loading time (R2 = 0.9384), a closer look at the plot of size versus time reveals

that a quadratic regression line has a noticeably better fit (R2 = 0.9889). This is likely a

result of the tool having to devote resources to file management that would otherwise be

available for completing functions more efficiently.

Next, SDB data prepared for usage in Sci2 workflows was read comprising.

• NIH data at 3.4 GB, NSF data at 489 MB, NIH data at 139 MB, and NEH data at

12.1 MB data prepared for temporal analysis.

• Data from NIH, NSF, MEDLINE, USPTO, and clinical trials at 11.5 MB and

MEDLINE data at 1 GB to be used in geospatial analysis.

• MEDLINE data at 514 kB for topical analysis.

• NSF data at 11.9 MB and USPTO data at 1.04 GB network analysis.

Average load times measured across 10 trials are shown in Table 5. The three largest

datasets, would not load but returned a Java heap space error (-TF*, Table 5).

Fig. 6 Comparison of load times, measured in seconds, across standardized datasets, tabulated (left) and
plotted with quadratic regression line (right)
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Temporal studies (‘‘When’’)

To test the scalability of temporal analysis within Sci2 we selected the Burst Detection

algorithm as described by Kleinberg (2003). To test this in a standardized fashion, we

generated a randomized set of years from 1980 to 2000, assigning each year a distribution

of short strings to test the accuracy of the algorithm. We then calculated the average time,

minimum time, and the maximum time it took the Burst Detection algorithm to complete

across 10 trials. In all cases, the algorithm was able to detect a pre-programmed burst of a

word over a short time frame.

A look at the table and graph in Fig. 7 shows linear growth with number of records that

holds equally true with file size. It is possible that with larger files, this may begin to show

the same quadratic tendency as the file loading, but 2.5 million records was the largest file

loaded. The data does illustrate that, barring resource exhaustion issues, Sci2 runs this

algorithm in a linear timescale.

We then conducted a burst analysis of the title fields for NIH, NSF, and NEH grant data.

The NSF and NEH datasets contain three columns: title, abstract, and year. The NIH data

contains only two columns: title and year. The NIH grant data set is the largest at 139 MB

and 2,490,837 records, followed by the NSF grant data at 489 MB and 453,740 records,

and finally the NEH grant data at 12.1 MB with 47,197 records (Table 6). In order to obtain

accurate results with the Burst Detection algorithm we had to normalize the title text with

the Lowercase, Tokenize, Stem, and Stopword Text algorithm prior to running the Burst

Table 5 Comparison of load times, measured in seconds, across nine different datasets

Datasets Sizes Number
of records

Mean Standard
deviation

Minimum Maximum

NIH (year, title, abstract) 3.4 GB 2,490,837 -TF*

USPTO (patent, citations) 1.04 GB 57,902,504 -TF*

MEDLINE (geospatial) 1.0 GB 9,646,117 -TF*

NSF (year, title, abstract) 489 MB 453,740 64.54 0.991 63.2 65.9

NIH (title, year) 139 MB 2,490,837 83.86 1.32 82.3 85.6

NEH (year, title, abstract) 12.1 MB 47,197 2.05 0.070 1.9 2.1

NSF (co-author network) 11.9 MB 341,110 4.52 0.063 4.4 4.6

Combined geo-spatial 11.5 MB 11,549 1.91 0.056 1.8 2.0

MEDLINE journals 0.5 MB 20,775 0.44 0.096 0.3 0.6

Fig. 7 Comparison of Burst Detection run times, measured in seconds, across standardized datasets,
tabulated (left) and plotted (right)
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Detection algorithm, a step not necessary with the synthetic data since it was optimized for

burst analysis. Due to the number of records in the NIH dataset, the Lowercase, Tokenize,

Stem, and Stopword Text algorithm failed to terminate and as a result the Burst Detection

algorithm was not tested with this dataset (-NT*).

Geospatial studies (‘‘Where’’)

In order to test Sci2 performance for geomapping, randomized datasets with lists of US

cities and associated longitude and latitude, were generated. There was only one distinct

step (algorithm) involved in this geospatial workflow: visualizing the geolocated data with

the Proportional Symbol Map (Biberstine 2012), see US geomap in Fig. 2. We projected

this on a map of the United States, as this data set only included locations within the US

average run times are shown in Fig. 8. Like with file loading, the Proportional Symbol Map

data is better fit by a quadratic model (R2 of 0.997 as opposed to 0.9834 for a linear fit).

Next, 11,848 SDB records related to gene therapy funding (NIH, NSF), publications

(MEDLINE), patents (USPTO), and clinical trials were loaded and the Proportional

Symbol Map was used to display the geocoded data (Table 7). Exactly 299 records had no

or incomplete geolocation data and were removed resulting in 11,549 rows at 11.5 MB.

The run time, at 4.37 s is lower than predicted by the model (6.11 s), implying that the

quadratic model may not perfectly describe the run time, particularly with smaller sets.

Table 6 Temporal analysis algorithm run time in seconds

Datasets Sizes
(MB)

Rows Mean SD Min Max

Burst Detection

NSF 489 453,740 13.64 0.648 12.9 14.8

NIH 139 2,490,837 -NT*

NEH 12.1 47,197 1.57 0.094 1.4 1.7

Table 7 Geospatial analysis algorithm run time in seconds

Dataset Size (MB) Rows Mean SD Min Max

Algorithm 1: Proportional Symbol Map

Pre-located 11.5 11,549 4.37 0.125 4.2 4.6

Fig. 8 Comparison of Proportional Symbol Map run times, measured in seconds, across standardized
datasets
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Topical studies (‘‘What’’)

The Sci2 tool supports the generation of science map overlays. Specifically, it uses the

UCSD map of science and classification system (Börner et al. 2012), a visual represen-

tation of 554 sub-disciplines within 13 disciplines of science and their relationships to one

another, see lower left map in Fig. 2. This basemap is then used to show the result of

mapping a data set’s journals to the underlying subdiscipline(s) those journals represent

(Biberstine 2011). Mapped subdisciplines are shown with node sizes relative to the number

of articles matching journals and color is based on the discipline as defined in the basemap.

To create a standardized dataset, random lists of valid journal names were generated. The

number of records and run time results are tabulated and plotted in Fig. 9. Linear and

quadratic models fit about equally well, but both show that the intercept is about 1.5 s,

more than half of the run time for all but the largest sets. This stands to reason as the

lookup tables must be loaded and accessed regardless of the size of the dataset being used.

Next, MEDLINE data was obtained from SDB including all 20,773 journals indexed in

MEDLINE and the number of articles published in those journals. Average Map of Science

via Journals run times are given in Table 8.

Network studies (‘‘With Whom’’)

Sci2 supports the extraction of diverse network types. The Extract Directed Network

algorithm (Alencar 2010) accepts tabular data and constructs a directed network from

entities in the specified source column to entities in the specified target column. Run times

across 10 trials for networks with different numbers of nodes and edges are shown in

Fig. 10. As to be expected, there is a direct linear relationship between the number of edges

and the run time (Fig. 10).

Next we retrieved from the SDB all 6,206 USPTO patents that cite patents with

numbers 591 and 592 in the patent number field. We ran the Extract Directed Network

Fig. 9 Comparison of UCSD map of science generation run times, measured in seconds, across
standardized datasets

Table 8 Topical visualization algorithm run time in seconds

Dataset Size (kB) Rows Mean SD Min Max

Algorithm 1: map of science via journals

MEDLINE journals 514 20,773 7.84 0.096 7.7 8.0
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algorithm, creating a network pointing from the patent numbers to the numbers those

patents reference in the dataset and results are given in Table 9. While the scalability of

Sci2 third-party visualization tools such as GUESS, Cytoscape, and Gephi do not pertain to

Sci2 in a direct way, we were interested to understand their scalability. Neither Cytoscape

nor GUESS were capable of rendering the network in a Fruchterman–Reingold layout,

while Gephi loaded the network in 2.1 s and rendered it in about 40 s (the actual process in

Gephi is non-terminating, but this was the time to a reasonably defined network). Gephi is

able to achieve higher performance due to its ability to leverage GPUs in computing

intensive tasks.

Discussion and future work

This paper introduced, exemplified, and examined the scalability of a database-tool

infrastructure for big Sci2 studies. SDB relational database functionality was exploited to

store, retrieve, and preprocess datasets. Subsequently, the data were processed using the

Sci2 tool. The scalability of this approach was tested for exemplary analysis workflows

using synthetic and SDB data. Techniques used were similar to those employed in testing

the performance of web-native information visualizations (Johnson and Jankun-Kelly

Records % 
Conn

Edges Size 
(MB) 

Run 
(sec)

SD 
(sec)

Records % 
Conn

Edges Size 
(MB) 

Run 
(sec)

SD 
(sec)

500 2 5,000 0.017 1.13 0.05 250 50 31,250 0.124 1.86 0.05

500 5 12,500 0.045 1.44 0.07 500 50 125,000 0.546 5.89 0.1

500 10 25,000 0.093 1.92 0.04 1,000 50 500,000 2.28 20.74 0.12

500 25 62,500 0.247 3.46 0.08 1,500 50 1,125,000 5.21 45.28 0.44

500 50 125,000 0.546 5.89 0.1 2,000 50 2,000,000 9.33 79.41 0.62

Fig. 10 Average directed network extraction run times, measured in seconds versus the number of edges in
the dataset, across standardized datasets, tabulated with varying connectivity (left) and number of nodes
(right, top) and plotted (below)

Table 9 Network analysis algorithm run time in seconds

Dataset Size (MB) Nodes Edges Mean SD Min Max

Algorithm 1: extract co-occurrence network

U.S. patent references 0.147 12,672 7,940 7.88 0.103 7.7 8.1
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2008). Most run-times scale linearly or exponentially with file size. The number of records

impacts run-time more than file size. Files larger than 1.5 million records (synthetic data)

and 500 MB (SDB) cannot be loaded and hence cannot be analyzed. Run times for rather

large datasets are commonly less than 10 s. Only large datasets combined with complex

analysis require more than one minute to execute.

A forthcoming paper will compare the runtime of Sci2 with other tools that have similar

functionality, e.g., TEXTrend or VOSViewer for topical analysis and visualization; Cite-

Space, Leydesdorff’s Software, DynaNets, SISOB, Cytoscape, and Gephi for network

analysis and visualization, see below and (Cobo et al. 2011) for links and references.

Recent work has added web services to the Sci2 tool and selected workflows can now be

run online. Other efforts aim to expand the adoption of OSGi/CIShell in support of

algorithm and tool plugin implementation and sharing across scientific boundaries. Tools

that are OSGi/CIShell compatible comprise TEXTrend (http://textrend.org) led by George

Kampis at Eötvös Loránd University, Budapest, Hungary supports natural language pro-

cessing, classification/mining, and graph algorithms for the analysis of business and

governmental text corpuses with an inherently temporal component and DynaNets (http://

www.dynanets.org) coordinated by Peter Sloot at the University of Amsterdam for the

study of evolving networks, or SISOB (http://sisob.lcc.uma.es) an observatory for science

in society based in social models.

Much of the development time for the SDB for the last year has been focused on adding

data to the system and refactoring code to make it easier to manage and update. Going

forward, we plan to implement an API to further ease access and usage of the SDB and we

are exploring an RDF conversion to add SDB to the Web of Linked Open Data (Heath and

Bizer 2011). In addition, we are considering a visual interface to SDB that uses Sci2 Web

services to empower users to interactively explore, analyze, and visualize search results.

Documentation and teaching of tool functionality and workflows are important for

research and practice. SDB and Sci2 are used in the Information Visualization MOOC

(http://ivmooc.cns.iu.edu) which debuted in Spring 2013 to over 1,700 users, making

existing and new workflows available via video tutorials to a much broader audience.
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