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ABSTRACT 

As more and more information is available on the Internet, search engines and bookmark tools become very popular. 
However, most search tools are based on character-level matching without any semantic analysis, and users have to 
manually organize their bookmarks or favorite collections without any convenient tool to help them identify the subjects 
of the Web pages. In this paper, we introduce an interactive tool that automatically analyzes, categorizes, and visualizes 
the semantic relationships of web pages in personal bookmark or favorites collections based on their semantic similarity. 
Sophisticated data analysis methods are applied to retrieve and analyze the full text of the Web pages. The Web pages are 
clustered hierarchically based on their semantic similarit ies. A utility measure is recursively applied to determine the best 
partitions that are visualized by what we call the Semantic Treemap. Various interaction methods such as scrolling, 
zooming, expanding, selecting, searching, filtering etc. are provided to facilitate viewing and querying for information. 
Furthermore, the hierarchical organization as well as the semantic similarit ies among Web pages can be exported and 
visualized in a collaborative 3D environment, allowing a group of people to compare and share each other’s bookmarks. 

Keywords: Semantic Treemap, Spring Embedding, semantic similarity, bookmark, cluster, hierarchy, interaction, 
information visualization 

1. INTRODUCTION 

The millions of documents on the rapidly expanding World Wide Web further exacerbate the information overload 
problem. The Web today has no classification system for Web sites, no formal indexing policy or controlled vocabulary, 
and no systematic way to name Web pages and assigning authorship in a particular catalogue. Currently most Web 
surfers rely on browser search engines such as Yahoo, Google etc. to find specific information on the Web. A typical 
search engine allows a user to type in certain keywords and simply retrieves all Web pages containing those words using 
character-level matching, instead of analyzing the semantic relationships between the query and the retrieved pages. As a 
result, many irrelevant Web pages may be retrieved, especially in the case of words with different meanings (e.g., bank) 
or different words with similar meanings (e.g., dad and pa). A big part of the work to identify relevant information is still 
left to the user and information searching on the Web remains a challenging and often frustrating task. One strategy to 
deal with this problem is to develop personal information systems consisting of focused subsets of Web sites highly 
relevant to a particular user. Bookmark or favorite collections are a convenient and popular way to achieve this goal. 
Most Web browsers nowadays such as Netscape and Internet Explorer provide embedded tools  for a user to bookmark 
his  favorite URLs  and organize them into folder structures featuring different categories. The efficiency of the 
categorization is totally up to the user’s own archiving experience and knowledge about the Web pages. In many cases 
the user bookmarks a Web page for later use before having a chance to read it, so it’s hard for him to label the category 
for that page. Another problem is that the bookmark archive management is completely manual: the user has to 
reorganize  the folders himself after he adds, deletes, or changes bookmarks. As the size of the archive grows, pool 
scalability of the current tools makes it hard to browse and retrieve bookmarks in a deeply nested hierarchy [16].   

In this paper, we introduce an interactive tool that aims automatically analyses, categorizes and visually displays 
collections of Web pages. The tool can take personal bookmark archives or bookmark collections from different 
individuals and parse all the linked Web pages. Advanced data mining techniques such as Latent Semantic Analysis [1] 
is used to analyze the semantic similarities between the pages. According to this semantic information, clusters of Web 
pages are generated and labeled with their semantic  topics. Further on, a visualization technique that we call Semantic 
Treemap is utilized to visualize the bookmark hierarchy in both the generated clustering division and the original folder 
organization making it easy for users to quickly locate relevant Web pages. To avoid information overflow and improve 
focusing, zooming and expanding are enabled on any area inside the Semantic Treemap. Besides, various searching and 
filtering methods are provided to help users quickly identify the Web pages satisfying their requests. Finally, the spatial 
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layout of the Web pages can be exported and utilized to create a visualization of the Web pages in a 3D virtual reality 
environment that can be shared and collaboratively examined. 

The rest of the paper is organized as follows: section 2 introduces related work; section 3 explains the data analysis 
process for semantic similarity analysis  and categorization of Web page collections; section 4 describes the Semantic 
Treemap used to visualize bookmark hierarchies as well as the various embedded interaction methods to facilitate 
information viewing and retrieval; section 5 gives some application examples using the Semantic Treemap to visualize 
bookmark collections; finally, section 6 summarizes the paper and discusses future work.  

2. RELATED WORK 

Since its first appearance, Latent Semantic Analysis (LSA) [1] has been widely used to induce semantics of textual 
documents [3], especially in content-based information retrieval [2] and semantic similarity comparison [4]. The 
technique is explained in section 3.2. To visualize similarity results, Force Directed Placement (FDP) algorithms [5] are 
frequently used. Kumar etc. implemented a 3D version of FDP [6]. Huang etc. extended FDP in  a system that uses a 
“logical frame” to present a subgraph of an entire graph and smoothly migrates from one frame to another [7]. FDP is 
used in Pathfinder Network Scaling (PfNet), which is  utilized in StarWalker by Chen to layout documents according to 
their semantic similarity [8]. In StarWalker, the similarity matrix is determined based on co-citation patterns for a large 
set of papers and the citation networks are displayed as minimal spanning trees that preserve only the most important 
links.  

To visualize hierarchical data Treemaps have shown great powers in many applications including DiskMapper from 
Micro Logic Corp, SeeDiff software code viewer from Bell Labs, Honeycomb  electronic product catalogs by the Hive 
Group, as well as SmartMoney’s Stock Marketmap and TruePeers’s PeopleMap. Many efforts have been made to make 
the space filling technique more effective. Asahi etc. introduced dynamic queries into the Analytic Hierarchy Process 
Treemap, allowing users to interactively change and see the influence of different factors [10]. Van Wijk etc. developed 
Cushion Treemaps to improve the visibility of nesting depth by shadows on cushion-like 3-D mounds [11]. Stasko and 
Zhang proposed a Focus+Context display and navigation techniques for enhancing radial, space-filling hierarchy 
visualizations [12]. Bederson etc. proposed Ordered and Quantum Treemaps, which organize the screen space into 
horizontal-vertical strips with square-like aspect ratio, while at the same time maintaining the original ordering as well as 
satisfying the need to accommodate fixed shape items  [14].  

Some empirical studies have been carried out on bookmark usage in the Web information space. A 1996 survey of 
6619 Web users [15] reported that over 80% respondents cited bookmarks as a strategy for locating information, and 
organizing bookmarks became one of the top three Web usability problems.  In his survey on 322 Web users [16], 
Abrams addressed why and how people create, use, and organize bookmarks, as well as the necessity to improve the 
organization, visualization, representation, and integration of bookmarks. These user studies provide scientific basis for 
the design of bookmark visualization and management systems. 

3. DATA MINING AND CLUSTERING 

Our bookmark visualization tool works in two phases: the data analysis phase and the data visualization phase. The first 
phase is divided into three steps: bookmark file parsing, semantic similarity modeling using LSA, and bookmark 
clustering and labeling. The second phase is also divided into three steps: bookmark layout with Semantic Treemaps, 
graphical display, and user interaction. The overall procedure is illustrated in Figure 1 and explained in detail in the 
following sections. 

3.1 Bookmark parsing 

Bookmark parsing is the first step of the whole visualization process. The input of the bookmark parser comes from 
existing bookmark files and the purpose is to set up a folder hierarchy representing the original categorization manifested 
in those files. There are two formats for the input. The first type contains personal bookmarks organized in a folder 
archive, usually maintained by their owner through some Web browser and saved as a standard HTML file. For this 
format our bookmark parser runs a recursive procedure to parse the HTML document and build up a folder tree 
containing all bookmarks in the document while maintaining the owner’s original folder hierarchy. The root of the tree 
corresponds to the unique top-level folder, each non-leaf node is a subfolder, and all bookmarks are in leaf nodes. Each 
folder or bookmark has a label, as given by the original owner suggesting his definition of its semantics. A URL link is 
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kept for each bookmark so that the referred Web page can be downloaded for semantic analysis . The folder tree created 
in this way exactly represents the user’s manual organization of his bookmarks. 

In the course of collaboration it can be advantageous to share bookmark files. Therefore, we support a second input 
file format resembling a list of bookmarks collected from different people. Each bookmark has an owner, a name, and a 
URL link. Since the bookmarks are arranged in a linear order, we need to create a hierarchical structure for the folder 
tree. We assign the root of the tree to be the bookmark pool containing all bookmarks from the file. In the first level we 
divide the bookmarks by their owners and for each owner build under the root a subfolder containing all his bookmarks. 
Next we divide each owner’s bookmarks by their URL fields and build a second-level subfolder for each field. For 
example, URL fields ending with “.edu” are categorized as “Educational”, while URLs with “.com” go under 
“Commercial”. We can further develop the folder tree by adding more layers categorized with more fine-grained 
features. The folder tree generated in this way roughly follows the categorization implied by the bookmarks’ features 
specified in the input file. Both formats of bookmark files can be imported in multiple and combined together, in which 
case a ‘bookmark pool’ will be set up for all people’s bookmarks and represented as the folder tree root; each owner will 
have a subfolder under the root and his bookmarks will be categorized either as defined by himself, or by bookmark 
features when the former is not available. 

3.2 Similarity modeling with Latent Semantic Analysis 

Next we need to download and parse all Web pages linked from the bookmarks in the folder tree and apply LSA to them. 
LSA [1] is a variant of the vector space model that converts a representative sample of documents to a term-by-document 
matrix in which each cell indicates the frequency with which each term (row) occurs in each document (column). In our 

case, if there are p valid  Web pages (documents) and t distinct words (terms) in all pages, this results in a t×p term-page 
matrix F  , which can also be regarded as p column vectors of t-dimension. LSA extends the vector space by modeling 
term-page relationships using a reduced approximation for the column and row space computed by singular value 
decomposition (SVD), as shown in formula (1), where L and R  are t  * n and n * p respectively, and S is an n * n diagonal 
matrix with the singular values. Care needs to be taken when choosing an appropriate value for n, which should be 
ideally large enough to fit the real structure of the data, but small enough so that noise, sampling errors and unimportant 
details are not modeled. We can sort all singular values and cut them at the point where the value greatly drops, and take  
the n highest singular values while omitting all others. Thus each Web page is represented as an n-dimensional vector in  
the n * p matrix FR , as shown in formula (2). This way, the dimensionality is greatly reduced (n << t), and only 
important and reliable patterns underlying the original data are  maintained.  

F ˜  L * S * R (1) 

FR = S * R  (2) 

SM = FN  * FN’, 0 = SM (ij) = 1 (3) 

DS (ij) = 1 - | SM (ij) |,   1 = i,  j= n  (4) 

Similarities between Web pages can be comp uted using dot products between two column  vectors of the reduced matrix, 
reflecting the degree to which two Web pages have a similar term usage pattern. The formula is given in (3), where SM is 
the n * n similarity matrix, and FN is obtained by normalizing the column vectors in FR. To simplify clustering and 
visualization, SM is  converted into the distance matrix DS by subtracting the absolute value of each element in SM from 
1,as given in formula (4), resulting in a symmetric n * n matrix with all elements in the range [0, 1] and all zeros on the 
diagonal. 

The terms we use for LSA are collected from the textual part of all downloaded Web pages (including the titles and 
labels of all HTML elements), and only terms with substantial meanings are counted. All punctuations, numbers, and 
special names are excluded. Besides, we build a small dictionary of stopwords to filter out grammatical or commonly 
used phrases  that tend to appear in almost every document. To speed up text parsing, a hashtable is used to record the 
frequencies of term occurrences for each Web page. However, not all Web pages are valid. Some bookmarks have mal-
formatted URLs, some pages aren’t accessible due to network failures, and some just don’t contain any useful terms. All 
invalid bookmarks are recorded with special marks and will not be considered in the semantic analysis. After all Web 
pages are parsed, the term-page matrix is generated for all valid terms and Web pages. 

Other than text, an HTML page may contain various multimedia and executable elements, such as images, audio, 
video, and applets etc. the semantic analysis of which is  beyond the scope of this paper. However, we maintain statistics 
on the number of audio files, video clips, and applets etc. that are linked from any web page as well as information on its 
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type, size, and access frequency etc. These statistics can be useful for data filtering and searching when users want to 
hide or highlight Web pages with certain features. 
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Figure 1.  Two phase bookmark visualization Figure 2. Hierarchical clustering of 8 Web pages

3.3 Hierarchical clustering 

From the similarity results of LSA we categorize the bookmarks and create a hierarchy of clusters grouping Web pages 
of similar semantic contents by a nearest-neighbor-based, agglomerative, hierarchical, unsupervised clustering algorithm.  
Clustering starts with a set of singleton clusters, each containing one Web page. The two most similar clusters over the 
entire set are merged into a new one that covers both. A complete linkage measurement is applied to determine the 
distance inside and between clusters based on the distance matrix. Merging of clusters repeats until a single all-inclusive 
cluster remains and a binary hierarchy of clustering sequence is produced. Figure  2 shows an example of how eight Web 
pages are clustered. The clustering layers are shown on the left with their corresponding partitions on the right.  

Obviously, the display of all the different clusters in this hierarchy in a Treemap would lead to a very cluttered 
display. We therefore developed a combination of a traditional Treemap and the Spring Embedding algorithm called 
Semantic Treemap (SM). An SM utilizes a Treemap to display the ‘best partitions’ of the hierarchical organization of the 
bookmark categories (clusters or folders) in a slice-and-dice fashion (see Figure 3). Within each subcategory, the Web 
pages are laid out according to their semantic similarities using the Sping Embedding algorithm. Consequently, similar 
bookmarks will be positioned close to each other, and bookmarks on similar topics will be clustered under the same 
category. 

To obtain a ‘best cluster partitions’, we recursively select the partitions that minimize the average intra-cluster 
distance AAD and maximize the average inter-cluster distance AED. Starting from the initial singleton clusters, as the 
cluster merging goes on, the inter-cluster distance between the two merged clusters grows bigger. It’s easy to infer from 
the algorithm described below that AAD keeps growing bigger, while AED first grows bigger to the maximum and then 
starts to drop. We define a utility measure U as the ratio of AAD against AED, and the partition with the lowest utility 
will be selected. In the example shown in Figure 2, layer 6 (the bottom one being layer 0) is selected as the first-level 
partition. It contains three clusters: (p1..p4)(p5,p6)(p7,p8). We can further partition each cluster in this level by applying 
the above utility recursively, and eventually build up a cluster tree with the whole bookmark set being the root, each 
cluster being a non-leaf node, and all bookmarks being the leaf nodes.  

Several factors should be considered when deciding whether a cluster should be further partitioned or not. One is 
the utility measure of the cluster. If its best (minimal) value is still quite small, we ’ll see that bookmarks inside that 
cluster still show the tendency to cluster into smaller subclusters, so it makes sense to further partition it. Another factor 
is the current cluster size, i.e. the number of bookmarks inside that cluster. If the size is too big, the treemap used to 
visualize it (see section 4) will be very crowded; if the size is too small, then space will not be efficiently used. The third 
factor is the current depth of the cluster. If the cluster is too deep, the treemap will be divided into too many small areas 
and it will be hard to identify  each individual bookmark. To balance all above factors, we can define a threshold for each 
of them, while at the same time, give users the option to interactively adjust the level of clustering.  
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To speed up the clustering procedure, we implement an algorithm that computes the intra/inter-cluster distances 
iteratively, rather than starting from individual clusters each time. Assume at layer q, we have partition Pq = { C0, …, Cp-

q-1 }, each cluster Ck contains a set of bookmarks Ck = { …, Bi, … }, the inter-cluster distance AEDkl between Ck and Cl 
and the utility measure U is given as below: 

SADk = ? dij for all Bi, Bj ?  Ck, i ?  j, SANk =| Ck | * (| Ck | - 1) / 2, Ck ?  Pq (5) 

SAD = ? SADk & SAN = ? SANk for all Ck ?  Pq, AAD = SAD / SAN  (6) 

SEDkl = ? dij for all Bi ?  Ck, Bj ?  Cl, SENkl = | Ck | * | Cl |, Ck, Cl ?  Pq, k  ?  l (7) 

SED = ? SEDkl & SEN = ? SENkl for all Ck, Cl ?  Pq, k  ?  l, AED = SED / SEN  (8) 

AEDkl = SEDkl  / SENkl, Ck, Cl ?  Pq, k  ?  l  (9) U q = AAD / AED (10) 

SADk and SANk are the total distance and number of edges inside Ck respectively, dij is the distance between Bi and Bj, 
and |Ck| is the size of Ck; SAD and SAN are the total intra-cluster distance and number of edges inside Pq respectively, and 
AAD is the average intra-cluster distance of Pq; SEDkl and SENkl are the total distance and number of edges between Ck 
and Cl respectively; SED and SEN  are the total inter-cluster distance and number of edges inside Pq respectively, and 
AED is the average inter-cluster distance of Pq. The algorithm is described as follows:  

1. Initia lize the bottom-layer partition P0 = { C0, …, Cp-1 }, where Ck = { Bk }, k  = 0…p-1, and Bk  is any valid 
bookmark in the bookmark pool.  From the above formulas, we have:  

AEDkl = dkl, Ck, Cl ?  P0, k  ?  l;  SAD = 0, SAN = 0; SED = ? dij for all Bi, Bj, SEN = p * (p – 1) / 2. 

2. In the current layer partition Pq, select cluster Cm and Cn, where AEDmn is the minimum among all AEDkl, Ck, Cl 

?  Pq, and merge them into a new cluster Ch. Calculate the next layer partition: 

AEDkl : = AEDkl, where k , l ?  m, n, h,  AEDkh : = (SEDkm + SEDkn) / (SENkm + SENkn); 

SAD := SAD + SEDmn,  SAN := SAN + SENmn; SED := SED - SEDmn,  SEN := SEN - SENmn; 

AAD := SAD  / SAN,  AED := SED / SEN,  U q+1 := AAD / AED;  Pq+1 := Pq – { Cm, Cn } + { Ch }. 

3. Repeat step 2 for p-1 times, until there’s only one cluster Pp-1 = { C }, where C = { B0, …Bp-1 } contains all 
bookmarks in the pool. Now we obtain all layers of partitions. 

4. Create the cluster tree with C  being the root. Select partition Po with the optimal (minimal) utility Uo  among all 
Uq, q = 0…p -1, add its clusters as the first-level nodes to the cluster tree. 

5. Regard each cluster Ck in Po as the root of the subtree for Ck, using the knowledge of the partition layers and 
formulas similar to those in step 2, calculate the optimal utility for subpartitions in Ck, and obtain its next -level 
subclusters and add them to the cluster tree. 

6. Repeat step 5 until one of the thresholds for utility measure, cluster size, or cluster depth is reached.  

7. Put all invalid bookmarks in the pool in one cluster, label it as an invalid cluster and add it as a first-level node 
to the cluster tree. The construction for the cluster tree is now complete. 

The purpose of adding all invalid bookmarks into the cluster tree is to keep it consistent with the folder tree so that 
both contain the complete set of bookmarks. As we can see in step 2, instead of recalculating all cluster distances from 
scratch for the next layer partition, we reuse the results from the current layer. Besides, only the clusters affected in the 
merging process need to be recalculated. This greatly reduces the computation complexity.  

3.4 Cluster labeling 

Each cluster needs a label to represent the semantic category of the Web pages it contains. An ideal label for a cluster 
would be the keywords that are most popular in all Web pages inside it while not so frequently used outside. To factor 
out Web page size when we count term frequencies, we normalize the term-page matrix by dividing each element with 
the norm of its column vector. Each time we label a cluster, we remove that label from the set of selectable terms when 
we label its subclusters, so that a cluster never uses the same label as its ancestors. Since the root cluster represents the 
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whole bookmark pool, we label it with the same name as the folder tree root, and the set of selectable terms contains all 
terms in the term-page matrix. Starting from the root, we recursively label all clusters in a top-down order.  

Suppose we already have cluster C labeled with term t chosen from term set T (all C ’s ancestors should have been 
labeled by now), our next step is to label each subcluster Ck in C. We select from term set T’ = T – t  the term tk with the 
maximum frequency measure (note that all frequencies here are normalized), which is the weighted sum of three factors: 

M( tk, Ck ) = a * F( tk, Ck  ) – b * S( tk, Ck  ) – c * F( tk, C-Ck  )  (11) 

Here  0 = a, b, c = 1 are weights, F( tk, Ck ) is the average frequency with which  tk appears in all Web pages in Ck; S( tk, 
Ck  ) is the standard deviation of tk’s frequencies in Ck; F( tk, C-Ck   ) is the average frequency with which tk appears in all 
other subclusters in C. The first factor favors terms with a highest overall frequency in Ck. The second factor penalizes 
terms with uneven frequency distribution in Ck, i.e. terms that are frequent in all Web pages are preferred over those that 
are only frequent in certain pages. The third factor penalizes terms that also appear frequently outside Ck, so only terms 
uniquely representative for Ck are chosen, and labels for different subclusters are dis tinguishable from each other. Among 
the above three factors, the first one is more important and thus a is usually set bigger than b and c. 

4. VISUALIZATION AND INTERACTION 

From the data analysis phase we acquire two kinds of bookmark hierarchies, one is based on the original folder structure 
inherent in the input bookmark files, the other comes from the semantic similarity and clustering results. We use 
Semantic Treemaps to visualize the tree structure of these two hierarchies as well as the semantic properties of individual 
bookmarks and the similarities between them. 

4.1 Semantic Treemap 

Semantic Treemaps are used to visualize the folder tree and the cluster tree respectively. STs use the traditional 
Treemap [9] space filling technique to represent the tree structure of the best partitions by alternatively dividing 
rectangles in horizontal and vertical direction, resulting in a set of nested rectangles showing the layers of nodes in the 
tree. A Spring Embedding also called Force Directed Placement (FDP) algorithm is used to layout the web pages in each 
Treemap rectangle according to their semantic similarities. By associating the semantic distances between data items  
with the spring force coefficients similar items will be drawn close to each other and vice versa.  

Note that FDP takes a long time to stabilize  on large data sets. However, we use a divide-and-conquer strategy: 
instead of applying the FDP algorithm to the whole data set, we take advantage of the hierarchical data structure and 
calculate its layout within each subcategory, which is of much smaller size and thus manageable within reasonable 
amount of time. 

In the final visualization, each folder/cluster (both called category) in the tree is represented by a rectangle in the 
treemap. The nesting of the rectangles represents the relationships among the subcategories. The bottom-level rectangles 
serve as the containers for web pages, each of which is represented by a small dot inside its corresponding rectangle. The 
area of each rectangle is in ratio with the size (total number of bookmarks) of that subcategory, wh ich helps maintain an 
even density among rectangles and avoid over-crowdness in big categories. Inside each rectangle, the semantic 
similarities between web pages are approximated with their 2D Euclidean distances, with semantically similar ones 
placed closer.  

To compute the Semantic Treemap layout, first we run a recursive procedure to calculate the positions and sizes for 
all rectangles according to the composition of the hierarchy; then for all innermost rectangles, we calculate their Spring 
Embedding layouts one by one using a subset of the distance matrix. Even though we might have a huge number of web 
pages  in the pool, there are rather few web pages in each cluster; besides we can limit the cluster size using a threshold 
(as discussed in section 3.3). As a result  we only need to compute the positions of a limited number of nodes during the 
FDP iterations.  

4.2 Visual Cues 

Color and size coding is used to visualize some other properties of bookmark folders and clusters. For example, the 
thickness of the rectangle frame and the size of its header are both in proportion with the rectangle's size, so upper level 
categories (assuming they are of more importance) will usually have thicker frames and bigger headers and thus are more 
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obvious. Besides, rectangles of different levels are displayed in colors of different brightness, i.e. the further down the 
nesting level, the darker the color. This gives a much clearer view of the hierarchy than plain rectangles with no frames 
or color-coding. As for the bookmarks, different dot shapes represent different types of Web pages, and the size of each 
dot encodes  the size of the HTML document. Besides, the popularity (hotness) of a Web page is also modeled by the 
saturation of its color hue. Naturally, bigger Web pages  correspond to bigger dots, while pages more frequently accessed 
appear in more saturated colors. 

When there are many levels in the bookmark hierarchy, the Semantic Treemap might get crowded without enough 
space for labels , and it could be hard for users to identify the hierarchical structure at one glance. To help users obtain an 
overview of the hierarchy, we provide an expandable textual node-link tree as a site map on the left side of the Semantic 
Treemap. Each non-leaf node in the tree represents a subcategory, and each leaf node represents a bookmark. While 
invalid bookmarks and clusters are not shown in the Semantic Treemap  they are shown with special marks in the textual 
tree, reminding users to delete the obsolete links and reload the temporarily failed ones. To ensure consistency between 
the textual tree and the Semantic Treemap, any operation on one of them will apply to the other as well. Both views can 
be chosen to display either the folder or the cluster hierarchy, and the choices are independent of each other, e.g. users 
can have both views displaying the folder hierarchy, or he can have the textual tree to show folders while the treemap to 
show clusters. The latter choice can achieve some special query functions as discussed later.  

4.3 Interaction Techniques 

Various interaction methods are provided to further facilitate the navigation for information, including scrolling, 
zooming, expanding/collapsing, filtering, searching, and selection. Among these interactions, selection and 
expanding/collapsing apply to the textual tree and the Semantic Treemap at the same time, scrolling apply to both but are 
independent, while zooming, filtering, and searching apply only to the treemap.  

Both the textual tree and the Semantic Treemap are displayed in a scrollable panel. When the hierarchy is too big to 
be shown in one frame, a user can scroll horizontally or vertically to move any part into the view port. He can also zoom 
in/out the treemap to see more details or more overview. An important feature of the Semantic Treemap is that each 
rectangle is expandable. To avoid over-crowdness, the user can collapse lower-level rectangles and hide them so that the 
overall structure is clearer. Vice versa, he can expand a path of rectangles to see the internal structure of their 
subcategories and bookmarks. The user can also expand/collapse nodes in the textual tree and the operation will 
automatically apply to the treemap as well.  If the user opens a dot (bookmark), it will be displayed in a special fill 
pattern, and a Web browser will be brought up to show the corresponding Web page. 

When a rectangle in the Semantic Treemap is pointed at (by mouse), its path (the sequence of its ancestors from itself 
up to the root) will be highlighted and its detailed information will be popped up next to its header. When a node is 
selected either in the tree or the treemap, it will be highlighted in the tree and its path will be highlighted in the treemap. 
When a user wants to see only the bookmarks within a certain range, he can use filters to hide the unwanted ones. Three 
kinds of filters are provided to select web pages based on domain type, size, or hotness. These filters can be used either 
separately or conjunctly. For example, the user can filter to see only pure-text Web pages under 10MB among the top ten 
hottest Web pages. The user can also use searching tools to find certain bookmarks with certain features. There are also 
three ways for searching: by names, by keywords (terms that appear most frequently in a Web page), and by URL links. 
For examp le, the user can type in the name of a folder and retrieve all the bookmarks in that folder; he can also search by 
keywords that may represent a cluster, or he can directly type in a URL. The bookmarks retrieved from the search will be 
highlighted. The search is "tolerant" in the sense that partial matching is used so that the user doesn't need to know the 
exact whole string. Of course, the more complete input the user submits, the more accurate result he will get.  

An interesting way to combine selecting with searching in the two bookmark hierarchy views can help a user 
evaluate how accurate he organizes his bookmarks. This can be achieved in the following way. First the user can show 
the cluster hierarchy in the textual tree and the folder hierarchy in the Semantic  Treemap. Then he can select any cluster 
in the tree and issue a special "Search Selection" command, which will enable  all bookmarks in the selected cluster to be 
retrieved in the treemap. From the distribution of the highlighted bookmarks, the user can find out how much his  own  
folder organization matches the computed semantic clustering. Vice versa, he can show the folders in the tree and the 
clusters in the treemap, and test how accurate the automatic categorization match the original manual one.  

To enable input and output of data, the tool also provides file operations. A user can import bookmark files from 
URLs or local file systems, and export the Semantic Treemap layout into a specially formatted text file. He can also 
reload updated Web pages or broken links due to network failures. Finally, the bookmark trees as well as the interaction 
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status of their Semantic Treemaps can be saved into a binary file enabling users to resume a particular visualization 
session at a later point in time.  

5. APPLICATION EXAMPLES  

Figure 3 shows a screen shot visualizing the lead author’s personal bookmark archive.  The left-side view gives the 
cluster hierarchy in a link-node tree structure, which is partly expanded displaying the names of some subclusters. The 
right-side view is the Semantic Treemap for the folder hierarchy. Under the root “Bookmarks for Ying Feng” we can see 
three folders represented as three light green rectangles. Inside the first folder “Personal Tool Bar” there is a subfolder 
with smaller header “Channels ” at the top of a darker green rectangle, inside which there are several bookmarks 
represented as small blue dots . Some folders are collapsed, such as “Personal Bookmarks / Computer / Course”, whose 
subfolders inside are hidden; some are expanded, such as subfolder “Research” just to the right, as we can see, its four 
subfolders are shown. Among them the one called “Visualization” is selected and highlighted in pink. Inside it the 
bookmark “AVL” is currently pointed at, and a small yellow dialog window is popped up near by showing its detailed 
information, while all its parent folders are highlighted with white borders showing its path to the root. From the toolbar 
near the top of the screen, we can see that only Web pages with size between 4KB and 10KB are shown, while all others 
are filtered out and hidden. On the other hand, all links at Indiana University that are related to visualization are 
highlighted in purple, as a result of the search by keywords “visualization” and URL link “Indiana”.  

 

 
Figure 3. Visualization of a personal bookmark file 
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Figure 4. A shared 3-D collaborative bookmark space  

To enable sharing and collaborative browsing, web page collections can be exported and visualized in a 3D desktop 
virtual reality environment such as the ActiveWorlds browser as shown in Figure 4. Each bookmark is represented by a 
small frame that is linked to the original Web page. The horizontal layout of the web pages is identical to the layout in 
Figure 3, i.e., bookmarks on similar topics are close in space. Users can enter this virtual bookmark landscape 
collaboratively, navigate freely, click on the frame to display the corresponding web page in the web browser, or answer 
questions and give advice using the in-built chat facility [17]. 

6. CONCLUSIONS AND FUTURE WORK 

Today, bookmark and favorite collections are used to create personal Web information spaces that help people remember 
and retrieve interesting Web pages. This paper introduced and applied Semantic Treemaps to support users to better 
organize and view their bookmark space as well as to maintain a large bookmark pool for mutual sharing among user 
groups. Taking advantage of both the Spring Embedding and the Treemap algorithm, Semantic Treemaps make efficient 
use of limited screen resource and make it possible to display large hierarchical bookmark sets while showing the 
semantic similarities between individual bookmarks at the same time. The user interface facilitates both browsing and 
retrieving.  

There are several aspects that need to be improved in the future. Squarified [11] or variable-shaped [13] Treemaps 
can be applied to avoid long narrow areas, so that Spring Embedding layouts can be better displayed in approximate 
squares. Currently our Semantic Treemaps can visualize inter-cluster hierarchies and intra-cluster similarities. We hope 
to further develop them to visualize inter-cluster similarities as well. This may be achieved by applying Spring 
Embedding at the cluster level, and accommodate a layout similar to Bubblemaps [14], instead of following strictly the 
slice-and-dice layout. Eventually we want to bring the bookmark visualization tool online, so that users can submit and 
modify their bookmarks and browse the bookmark pool through the Internet, achieving free sharing among communities 
in the real sense. 
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