Borner, Katy. (1998). Generative, adaptive human-computer interaction by conceptual

analogy. In Thomas Rist (ed), Combining Al and Graphics for the Interface of the Future
<http://www.dfki.de/imedia/workshops/ecai98/papers/cont03.html>, held in conjunction
with the 13th Conference on Artificial Intelligence, Brighton, UK, pp. 98-109, Brighton,

Generative, Adaptive Human-Computer Interaction
by Conceptual Analogy

Katy Borner
University of Bielefeld, Faculty of Technology
PF 10 01 31, 33501 Bielefeld, Germany
katy@TechFak.Uni-Bielefeld.de

Abstract

This paper describes research on generative and adaptive human-computer interaction (HCI).
Generative interaction refers to the generation of useful knowledge structures (e.g., a config-
uration or a plan) to satisfy a user’s goals. Adaptive interaction entails the personalization
of content and presentation of it (Langley 1997). Content involves the knowledge structures
and inferences used to support human problem solving. The presentation of content refers
to the implemented human-computer interface. The research combines Artificial Intelligence
(AI) techniques and Virtual Reality (VR) technology. In particular the approach of Concep-
tual Analogy (Borner 1997) is applied to provide generative and adaptive support for human
problem solving in an assistant-like fashion. VR technology enables the computer interface
to be adapted to the perceptual and effector systems of human users.

1 Introduction

By intelligent HCI we mean generative, adaptive human-computer interaction to support tasks
like navigation or manipulation. Generative interaction refers to the generation of useful knowl-
edge structures (e.g., a configuration or a plan) to satisfy a user’s goals. Adaptive interaction
entails the personalization of content and presentation of it (Langley 1997). Content involves the
knowledge structures and inferences used to support human problem solving. The presentation
of content refers to the implemented human-computer interface.

Note that adaptive refers to the static adaptation of the input/output devices used for human-
computer interaction (HCI) as well as to the dynamic update of the software used to support
human users. Virtual Reality (VR) technology can be applied advantageously to adapt computer
interfaces to the perceptual and effector systems of human users. In order to achieve adaptive
user support approaches developed in Artificial Intelligence (AI) can be exploited.

This paper proposes a system to be built which uses a VR interface for HCI and successively
adapts its knowledge structures and reasoning as well as the presentation of support to user
preferences.

The organization of the paper is as follows. Section 2 starts out by introducing some major
problems of todays HCI to achieve generative, adaptive interaction. Section 3 introduces an
abstract application domain that will be used to illustrate the adaptive support of navigation
and manipulation tasks. In Section 4 we give an overview about Conceptual Analogy, a knowledge
lean, efficient approach that may be applied advantageously to achieve adaptive HCI based on
past user traces. The approach will be applied to support navigation and manipulation tasks


tneirync
Text Box
Börner, Katy. (1998). Generative, adaptive human-computer interaction by conceptual analogy. In Thomas Rist (ed), Combining AI and Graphics for the Interface of the Future <http://www.dfki.de/imedia/workshops/ecai98/papers/cont03.html>, held in conjunction with the 13th Conference on Artificial Intelligence, Brighton, UK, pp. 98-109, Brighton, UK, August 24, 1998. 



by suggesting preferred paths and subassemblies. Adaptive interaction via a Virtual Reality
interface is exemplified in Section 5. The paper concludes with a discussion of this research.

2 The Problem of Generative, Adaptive HCI

Todays WIMP graphical user interfaces are designed for a single user who controls objects that
have no autonomy and at most react to mouse manipulations. Interaction uses only one visual
channel at a time, is half duplex, and involves a sequence of mouse events in the most complex
scenario. Post-WIMP interfaces are under development and test since the early 1990s but are
not yet in wide circulation (van Dam 1997). They support human problem solving in a vari-
ety of tasks by "delegating” these tasks to the system. In contrast to previous generations of
interfaces, post-WIMP interfaces applying VR technology integrate a number of modes (e.g.,
speech, hearing, touch, gesture, facial expression, bio-feedback) and media (e.g., graphic, anima-
tion), thereby involving several senses in parallel. Multiple users can work on a shared task via
systems providing viewer-centered perspective and wide-field-of-view stereo immersive displays
controlled via head and hand tracking. Speech and gesture recognition devices can exchange
continuous signals for operand and operation specification in full-duplex.

There exist a number of VR systems like Sculptor (Kurmann 1995) or Sketch (Zeleznik, Hern-
don & Hughes 1996) that allow for very intuitive and direct virtual interaction within a 3D
world. However, these systems provide only rudimentary support on navigating and manipu-
lating virtual worlds. On the other hand, there are examples of generative and adaptive Al
systems like Clavier (Hennessy & Hinkle 1992), that support human users, e.g., in generating
autoclave loads. However, these systems still use WIMP GUI’s for human-computer interaction.
To our knowledge there exists no system that provides generative, adaptive support, employs
VR technology, and is able to adapt the support and its presentation to a user’s personal style.

3 Application Domain and Task

To motivate, illustrate, and evaluate our approach to generative, adaptive human-computer
interaction we will use an abstract labyrinth-like world. This rectangular, equally spaced world
is enriched with virtual objects. The labyrinth-like world can be navigated in three dimensions
and the objects can be manipulated (selected and assembled). User paths as well as object
assemblies are represented by sets of places/objects plus the temporal/spatial relations among
them (e.g., 'place_1 before place_2’ or ’object_1 below object_2’).

The general task is to build certain object assemblies at different locations within a restricted
time. Therefore, the user has to navigate to particular places and manipulate objects correctly.
The abstract domain and task may be instantiated into concrete domains and tasks such as archi-
tectural design, robot navigation, manipulation and navigation of potentially huge information
spaces, or production planning.

Examples: A simple navigation task is depicted in Figure 1, left. Reachable places (e.g., the
places labeled A to D) correspond to the intersecting points of a fixed grid and can be uniquely
identified by their z/y coordinates. Steps connect places horizontally or vertically. Despite the
simplicity of this example there exists a variety of paths connecting, e.g., the places labeled C and
B (see Fig. 2). A navigation problem consists of arbitrary places and path pieces connecting
these places partially. There is no map or optimization criteria (like find the shortest path)
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Figure 1: Simple navigation task (left) and manipulation task (right)

available. Figure 1, right shows an simple sample manipulation task. Again, there exist several
possibilities to built, e.g., a toy tower using the stones labeled A to F. Both tasks are given in
2D but extend to 3D naturally.

Navigation examples can be represented by a set of vertices and a set of edges representing
places and the before relation among these places. For example the path P from starting point
C at position 0/0 to end point B at position 2/2 labeled with (I) in Fig. 2 may be represented
by:

Py = ({0/0,1/0,2/0,2/1,2/2},{(0/0,1/0), (1/0,2/0), (2/0,2/1), (2/1,2/2)}).

Manipulation examples can be represented by a set of objects (represented by their type - in
the example A to F) and the below relation among them. Thus the toy tower assembly A in
Fig. 1, right may be represented by:

A= ({A,B,C,D,E,F},{(A,B),(B,C),(C,D),(D,E),(E,F)}).

By introducing other relations like beside, in etc. more complex object assemblies can be repre-
sented.

Given a large number of examples (also called cases) a case-based approach may be applied. A
new navigation or manipulation problem is solved by selecting similar past cases and transferring
(if needed adapting) their solution to generate an appropriate solution. For detailed surveys of
case-based reasoning see (Kolodner 1993, Aamodt & Plaza 1994).

However, to support navigation and manipulation tasks not the position or type of single
places/objects but their temporal/spatial relations are important and have to be considered
during retrieval and adaptation. Cases need to be represented by graphs and a structural
similarity measure working over case sets has to be defined. We are going to use the following
graph-theoretic definitions.

A graph g = (V9,EY9) is an ordered pair of vertices V9 and edges EY with E9 C V9 x V9.
A set of graphs is denoted by G.

The entire graph ¢(%) of a set G of graphs equals the union of the vertices/edges of the graphs
in G, ie., g@ = (Ul ve, UG By = (V@) E@),
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Figure 2: Example paths connecting places labeled C and B

Based on this we can define a case, case-base as well as a problem and its solution.
A structurally represented case ¢ = (V¢ E€) is a graph.

A case base CB is a finite set of cases.

A problem provides a set of vertices and perhaps some edges; i.e., it is a forest.

A solution of a problem contains the problem vertices and edges and adds those vertices and
edges from structurally similar cases that are needed to connect all problem vertices and edges.

The structural similarity' o maps a set G of graphs into the interval [0, 1]:
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A case class CC' is a non-empty subset of C'B that groups cases of high structural similarity.

were El(G)

Additionally, we are dealing with a weak theory domain. Hardly any information about the
relevance of features guiding the selection of similar cases is available. The adaptation of prior
paths/arrangements mainly corresponds to adding, eliminating, or substituting places/objects
and their relations. Because of the variety and the possible number of combinations of these
modifications, adaptation knowledge is difficult to acquire by hand. Assuming that structurally
similar cases satisfy similar constraints, a new problem may be solved by transferring the vertices
and edges of the most similar case class. That way, constraints on navigation or manipulation
tasks are transferred implicitly. On the assumption that relations which occurred often in the
cases of a case class lead to solutions of higher quality, edges of high relative frequency are
preferred to generate complete problem solutions.

!Note that the structural similarity function is commutative and associative. Thus it may be applied to a pair
of cases as well as to a set of cases.



The relative frequency Pg of an edge (v;,v;) of the entire graph of a set G of graphs equals the
cardinality of a set of graphs containing this edge divided by the number of graphs in G:

Po((vi,vj)) == Hge G | |(Z-|,vj) € E9}|.

The relative frequency Pg of a set of edges E relative to a set of graphs G equals:

Pg(E) = L Y Pal(vi, ).

|E| (Ui,vj)EE

The quality of a solution equals the relative frequency of its edges with regard to the cases used
to generate it.

Taken together, past cases may be combined to support navigation as well as manipulation
tasks. During reasoning, the temporal and spatial structure (which does not reflect the function
or behavior of objects) inherent in such paths and object arrangements as well as its relative
frequency needs to be considered. Complex case representations, however, cause increased com-
putational expense to retrieve, match, and adapt cases. To guarantee answer times that are
realistic for real world applications, efficient memory organizations directly tailored to the ap-
plied reasoning mechanisms are essential. Problems that relate to the amount and the structural
complexity of the knowledge have to be addressed.

4 The Approach of Conceptual Analogy

Conceptual analogy (CA) is a general approach that relies on conceptual clustering to facilitate
the efficient selection and combination of complex cases in analogous situations (Bérner 1997).2
CA divides the overall task into memory organization and analogical reasoning. Both subtasks
process graph representations but are grounded on attribute-value representation of past cases.
They are explained in detail subsequently.

Originally, the approach was designed to support the design of complex installation infrastruc-
tures for industrial buildings. In this domain cases correspond to pipe systems that connect a
given set of outlets to the main access. Pipe systems for fresh and return air, electrical circuits,
computer networks, phone cables, etc. are numerous and show varied topological structures.

The approach has been fully implemented in SYN, a module of a highly interactive, adaptive
design assistant system. The implemented system interacts with users via the manipulation of
CAD layouts describing pipe systems of real buildings. It supports architects in the design of
new buildings and adapts its support to different needs based on past user interactions. See
(Borner 1995, Borner 1997) for a more detailed description of the implementation.

4.1 Memory Organization

Memory organization requires a case base CB = {¢y,..,cy} providing a significant number of
structurally represented cases as well as a structural similarity function o. Nearest-neighbor-
based, agglomerative, unsupervised conceptual clustering is applied to create a hierarchy of case
classes grouping cases of similar structure.

2The research was strongly inspired by work of Bipin Indurkhya and Douglas Hofstadter to model human
analogy-making in idealized domains (Indurkhya 1992, Hofstadter & the Fluid Analogies Research Group 1995).



Conceptual clustering starts with a set of singleton vertices representing case classes, each
containing a single case ¢;,7 = 1,...,|CB|. The two most similar case classes CC} and CCj over
the entire set are merged to form a new case class CC = C'Ci U CCj that covers both. This
process is repeated for each of the remaining N — 1 case classes, where N = |CB|. Merging of
case classes continues until a single, all-inclusive cluster remains. At termination, a uniform,
binary hierarchy of case classes is left.
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Figure 3: Concept hierarchy representing case cyryy to ¢(x)

Subsequently, a concept description K (CC') is assigned to each case class CC of the case class
hierarchy resulting in a concept hierarchy. The concept of a case class CC equals n = |CC|
(possibly empty) graphs showing the same relative frequency of their edges relative to the cases
in CC.

A concept K(CC) ist defined as K(CC) := {mz(_cc) | i = 1,...,|CC|} where the vertices and
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In such a way, large numbers of cases with many details can be reduced to a number of
hierarchically organized concepts. The concrete cases, however, are stored to enable the dynamic
reorganization and update of concepts.



Example: Figure 3 depicts the organization of four cases into a concept hierarchy. N cases
are represented by 2N — 1 case classes respective concepts K (CC'). Leaf vertices correspond to
concrete cases and are represented by the cases themselves, e.g., K1 = {C(V H)}. Generalized
concepts in the concept hierarchy are labeled K5 to K7 and are characterized by sets of graphs.
Edges with a relative frequency of 1 are shown in black, edges with less relative frequency are
drawn in grey.
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Figure 4: Graphical illustration of concept representation K7

The similarity of these concepts is given on the left hand side. As for concept K5 two edges
with a relative frequency of 1 plus four edges with a relative frequency of 1/2 are divided by 6
edges altogether resulting in a similarity of 2/3.

Concept K7 that represents c(yrr) to ¢(x) is illustrated graphically in Fig. 4. It can be applied
to generate c(yrr) to ¢(x) as well as combinations thereof, e.g., ¢(y1) depicted in Fig. 2.

4.2 Analogical Reasoning

Analogical Reasoning is based on concepts exclusively. Given a new problem, the most applicable
concept containing all problem objects is determined by searching the concept hierarchy in a
top-down fashion.

The applicability o of a concept K(CC) to solve a problem p = (VP, EP) equals —1, if the entire
graph of the concept does not contain the problem. Otherwise it equals the similarity of CC"

. -1 iff VP g VKO A Bp g BK(CCO)
(K (CC),p) = { o(CC) otherwise

If 0 < a(K(CC),p) <1 holds, then K(CC) will allow to generate at least one solution of p.
The concept showing the highest « value is called the most applicable concept’. It shows the
highest structural similarity and solves the problem. Instead of adapting one or more cases to
solve the problem, the concept representation K (CC') of a case class CC is used to generate a
set of adapted solutions Scc,, for a problem p. In general, there exists more than one applicable
concept. The set of all solutions Scgy of a CB for a problem p equals the union of solution sets
Scc,p- Finally, the set of solutions may be ordered corresponding to their quality.

The quality u of a solution s = (V% E¥) depends on the relative frequency of its edges with
regard to the case class used. In order to determine Poc(E®) every solution edge E* need to be
mapped with every edge of a case. Given the representation of the applied concept

K(CC) = {(VD B, ., (Ve LB ), (vPTEe), gPTEe))y

3Note that the most similar concept may be too concrete to allow the generation of a solution.




the solution quality equals the sum of the relative frequency of solution edges divided by the
total number of solution edges:

St B 0B ey
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0,1].

In this way the concept representation reduces the number of mappings required to determine
the quality of a solution considerably.

Example: Figure 5 shows two problems, a number of applicable concepts taken from the
concept hierarchy depicted in Fig. 3 as well as three solutions and their quality. Two solutions
can be generated by applying concrete cases, i.e., c¢(yrr) and ¢y rrr). The quality of the resulting
solutions equals 1. The last solution (resembling the path labeled (VI) in Fig. 2) has to be
combined out of case c(y ) to ¢(x). Its quality equals 1+ 3+ 1/4 divided by 4 resulting in 7/16.
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Figure 5: Problems, applicable concepts, solutions, and solution quality

If the solution was accepted by the user, its incorporation into an existing concept changes at
least the relative frequency of edges. If the solution was not accepted, the case memory needs
to be reorganized to incorporate the solution provided by the user.



Be aware, that the support a user gets is based on her/his past actions exclusively. So if s/he
always takes a detour, the system will support this behavior and assign a high quality to these
solutions.

5 Adaptive Interaction via Virtual Reality Interfaces

A major problem concerning assistance systems is the limited interaction capability of the cur-
rently used human-computer interfaces. Often, HCI is restricted to a non-intuitive use of key-
board, mouse, and screen. Extensive training is required to handle programs (e.g., a CAD tool)
effectively.

Virtual Reality (VR) computer interfaces such as the Responsive Workbench (Kriiger & Frohlich
1994) or the Automatic Virtual Environment (CAVE) system (Cruz-Neira, Sandin & DeFanti
1993) allow multiple users to interact in a shared virtual and physical space. They support
many of the perceptual channels of information that a person processes and the interface can
be adapted statically to the human perceptual and effector systems. Additionally, multimodal
VR interfaces permit extensive tracing of human that goes far beyond recording mouse events.
The resulting behavioral protocols can serve as a basis to support human problem solving in
complex tasks involving spatially organized information. VR interfaces combined with Artificial
Intelligence techniques may lead to truly adaptable and generative human-computer interaction.
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Figure 6: Merging Conceptual Analogy and a VR interface for generative, adaptive HCI

A combination of Conceptual Analogy with a CAVE human-computer interface is sketched in
Fig. 6. In the CAVE, the user wears a set of shutter glasses that allow for time-multiplexing
different images to different eyes. The glasses have a large angle of view, approximately 90
degrees per eye, and are synchronized by an infrared signal from emitters located near the scene.
Using viewer-centered perspective, each eye’s image is computed for that eye’s exact location.
Other participants see stereo, but from the tracked person’s perspective. Input devices include
gloves with position and orientation trackers as well as the tracked shutter glasses.



The application scenario is as follows. Entering the CAVE, the user experiences a world of
virtual objects (uniform geometric solids) arranged at different places in the three dimensional
labyrinth-like world. For example s/he may be asked to go from a starting point C at position
0/0 to an end point B at position 2/2 (see Fig. 1, left). The places can be reached using a
variety of paths (see Fig. 2). The users task is to visit all places in a certain sequence. At
each place s/he is asked to arrange the available objects by direct manipulation in a predefined
way, for example, to assemble an arch, fence, tower etc. (see Fig. 1, right for an example of a
tower). Simple snapping mechanisms by which objects that are placed close to each other are
automatically attached are employed to ease the correct adjustment of objects without requiring
force feedback. However, the variety of possible object assemblies is enormous.

In order to support navigation and manipulation the user’s coordinates (place) as well as
changing positions of typed objects will be time-stamped and are stored as navigation and
manipulation examples in a case-base. Conceptual clustering is applied to extract a hierarchy
of concepts representing knowledge about preferred navigation paths as well as about preferred
object assemblies. Support will be provided by applying concepts to generate solution sets.
Finally, solutions are presented to the user.

In such a way, generative interaction is achieved by applying the approach of Conceptual Anal-
ogy to support navigation as well as manipulation tasks. Personalization of content is done by
acquiring the knowledge used for support automatically via Conceptual Analogy. Content is rep-
resented by concepts for navigation (e.g., about preferred paths) and concepts for manipulation
(e.g., about preferred object assemblies). When the system first interacts with a user, it has
no concepts about his/her preferences. During each session, new paths/assemblies are acquired,
and if they are similar to previously acquired paths/assemblies, they are merged together to
form more general ones. Later on these general paths/assemblies are used to support reasoning
in an analogous fashion. Personalized presentation of content is achieved at increasing levels
of generalization by using a VR interface. In the beginning, human-computer interaction for
novices proceeds at a very concrete level. For example, objects to be selected might be high-
lighted and pathways to explore might be marked. However, as the system gains experience with
a user, it collects data about his/her preferences and offers path macros and object assemblies.

Because content and its presentation are personalized together, preferred paths or assemblies
can be used as well as communicated during problem solving on increasing levels of generaliza-
tion. The interfaces’ expressiveness scales along with the users’ skill. Over time, less navigation
and manipulation proceeds at higher levels of generalization, increasing the overall efficiency of
human-computer interaction. Personalized abstract concepts are grounded on concrete human-
computer interactions and the concrete interaction changes with the concepts that are built
up.

Generative, adaptive support for navigation and manipulation is provided visually at increasing
levels of generalization, for example, by concretely highlighting objects or the next place to visit,
up to depicting the bounding boxes of preferred object assemblies or showing preferred paths
for reaching remaining locations*. Instead of traversing a concrete path or manipulating single
objects the user can employ path macros to change places instantaneously or manipulate larger
object assemblies, thus delegating the concrete execution of the commands to the system. In such
a way, the user’s navigation and manipulation activities are constrained by, but not restricted
to, past interactions.

“Note that there is always more than one way to guide navigation and manipulation interactions. For naviga-
tion, signs may be introduced, footsteps may visualize the number of users that went this path before or often used
path may be simply broader or look nicer. On a more abstract level, one may shortcut the walk by introducing
jumping points.
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6 Discussion

Taken together the research extends the approach of Conceptual Analogy to support navigation
and manipulation tasks visually at increasing levels of generalization. The approach itself can
be very well used with todays WIMP GUT’s. In fact, its first implementation used a CAD
interface to support architectural design tasks. However, three dimensional navigation and
manipulation tasks are hard to solve if two dimensional input and output devices are used. VR
interfaces allow not only for three dimensional HCI but also merge haptic and visual space. The
combination of VR interfaces with Conceptual Analogy enables generative, adaptive human-
computer interaction that feels more intuitive and may provide easy-to-use support for novices
and high effectiveness for experts.

In the selected domain and task, temporal and spatial constraints are used to represent object
assemblies and paths. Given that temporal and spatial constraints can be seen as the basic
constraints applied for human memory organization and reasoning, the results achieved in this
project may transfer to other domains that can be mapped into space and time.
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