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PREFACE 

Throughout my educational career, I have admired the transformative power of 

mediated experiences, or the fact that we can get excited by seeing shadows on the 

wall of a cave (or, in modern times, colorful pixels on a screen). Challenged and highly 

excited by “You Are Not A Gadget” (123), a provocative reflection on the internet, 

modern media, and their influence on society by VR pioneer Jaron Lanier, I found 

information science and interaction design as a perfect place to set up my new inner 

intellectual workshop. When I experienced proper VR for the first time at IU, I had a 

glimmer of an understanding what those people in the late 19th century must have felt 

when seeing that famous first film record of a train arriving at a station (174). 

According to an urban legend, when people watched this clip first the first time, many 

believed the train would dash out of the screen at any moment, simply because they 

had never experienced this kind of medium before. Being enchanted by the 

possibilities of a new medium never loses its power, whether it is in 1895 or in 2016. 

Combining VR with data visualization then, a field with rich theoretical and applied 

history, seemed like a dream project for a dissertation that is both theoretically sound 

and practically valuable, and that can help address real-world issues in a world 

increasingly reliant on our human ability to analyze data, identify patterns, and spot 

trends. I am grateful that this dissertation worked out the way it did, allowing me to 

combine data visualization for solving practical problems with the strength of the 

mediated experience that is VR.  

While collecting the data for this dissertation, I had the privilege of watching many 

dozens of people move and act in VR for the first time. While the VR applications 
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described in this dissertation – owing to the nature of this research – lack the 

graphical fidelity, action, and larger-than-life environments of video games or similar 

products of entertainment, I witnessed that VR has an impact almost regardless of 

content. With immersive media becoming increasingly cheap, immersive content 

becoming ever more widespread, and producing immersive content getting easier by 

the day, I cannot wait to see where we can take the emerging field of immersive data 

visualization.  

As a tinkerer, I cannot wait to continue building.   

Andreas Bueckle 

Friday, July 16, 2021 
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Andreas Bueckle 

OPTIMIZING PERFORMANCE AND SATISFACTION IN VIRTUAL REALITY 

ENVIRONMENTS WITH INTERVENTIONS USING THE DATA VISUALIZATION 

LITERACY FRAMEWORK 

In the age of big data, interactive data visualizations are becoming increasingly 

prevalent. The ability to focus on subsets of data is essential for exploring large 

temporal, geospatial, topical, and network datasets. In order to categorize all parts of 

data visualizations, various attempts have been made to build frameworks for how to 

interpret, teach, and construct data visualizations while turning data into insights. 

This need for interactive data visualizations has sparked interest to classify key 

interaction types. The recent rise of affordable virtual reality (VR) has introduced yet 

more ways of interacting with datasets using our visual abilities while enabling user 

input beyond mouse and keyboard.  

In this dissertation, we apply the Data Visualization Literacy Framework (DVL-FW) in 

a series of three interconnected VR user studies with 152 subjects representing 

around 123 hours of face-to-face data collection. In the first study, we compare 

performance and satisfaction across two VR and one desktop implementation of the 

same 3D manipulation interface. We found that while VR users are about three times 

as fast and about a third more accurate in terms of rotation than desktop users, there 

are no significant differences for position accuracy. Building on this experiment, in the 

second study, we investigate quantitative differences between two user cohorts, where 

the experiment cohort gets to inspect their own manipulation performance data 

between trials in a VR setup and with a traditional 2D line graph, depending on their 
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assigned setup (“Reflective phase”). Our findings indicate that while there is no 

difference in performance between VR users across cohorts, the Reflective phase yields 

significant differences for desktop users and increases the satisfaction for VR users. 

Moreover, we identified behavioral metrics for VR users in the Reflective phase that 

have a favorable effect on performance in subsequent trials. Finally, in the third study, 

we asked users to travel to various points inside a virtual 3D model of Luddy Hall on 

the Indiana University campus in Bloomington, IN. We then tested whether the 

experiment cohort was able to devise faster movement strategies after a Reflective 

phase where they inspected their own navigation data in a VR visualization with a 

miniature model of the building. We found that users with a Reflective phase in VR 

have significantly faster completion times in the second set of trials than those who 

did not, while also scoring significantly higher on a mid-questionnaire about the 

topology of the virtual building.  

Our methodology combines quantitative and qualitative surveys with a VR software 

and hardware solution that can be used in future human-subject studies by others. In 

addition to contributing to the theory of data visualization, specifically the interaction 

typology of the DVL-FW, this dissertation provides evidence-based design 

recommendations for matching and movement tasks in VR and on desktop devices by 

comparing task completion time, accuracy, and user satisfaction across different 

implementations of the same application. Further, we derive design guidelines for 

interventions using data visualizations for subjects to reflect on their behavior in VR to 

improve performance and satisfaction metrics in future trials. 
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1. Introduction 

As the amount of data displayed to us in everyday life is increasing by several orders 

of magnitude every year, interaction with data has become an ever more important 

task for gaining insights from data visualizations. As early as the beginning of this 

century, German computer scientist Daniel Keim (117) cited a UC Berkeley estimate 

whereby every year, about 1 million terabyte of data were created. At the time of 

writing, this was almost two decades ago in 2002. He notes elsewhere (118):  

“Effective data mining depends on having a human in the data exploration process while 
combining this person’s flexibility, creativity, and general knowledge with the enormous 
storage capacity and computational power of today’s computers. Visual data exploration 
seeks to integrate humans in the data exploration process, applying their perceptual 
abilities to the large data sets now available. The basic idea is to present the data in 
some visual form, allowing data analysts to gain insight into it and draw conclusions, as 
well as interact with it.” (p. 39) 

Data visualization thus allows humans and computers to work together, connected by 

an empowering user interface (UI). When analyzing data, the visual acuity, ability to 

recognize patterns and trends, and spatial memory of an analyst make a powerful 

addition to the computational capabilities and speed of a computer system. 

Visualizations then allow the user to not only see the data but also interact with it to 

unearth more insights than are initially visible. This sentiment was mirrored years 

earlier in Ben Shneiderman’s famous report aptly titled “The Eyes Have It” (176) where 

the author identifies the visual primacy of humans when it comes to parsing 

information. Many modern data visualization software packages contain native 

functionality to manipulate graphs, select subsets of data, or annotate them on the 

spot. While the standard paradigm for data visualization has long been the printed 

chart and then, with the rise of the personal computer, the 2D monitor plus mouse 
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and keyboard, newer media for deployment have been researched in recent years, 

including but not limited to, large display walls, mobile phones, tablets, augmented 

reality (AR), and VR. VR offers new and exciting ways of interacting with virtual worlds 

as a whole, and elements of graphs, charts, maps, networks, and tree visualizations 

specifically. While VR as a technology has existed for several decades, it is only over 

the past few years that we have seen affordable, portable, and comparatively high-spec 

VR hardware enter the market, along with content as well as the necessary software 

development kits (SDKs) to allow single users without extensive expertise in computer 

graphics to produce their own VR content. While the future of VR as a mass medium 

is all but clear (99), there exist diverse domain applications with data visualizations in 

which users are immersed in virtual models, look at data as if it were right in front of 

them, and use their innate visual acuity and fine motor skills to turn data into 

insights. Indeed, VR has been successfully applied in scientific visualization for a long 

time (42). As a result, data visualizations developed for and deployed in VR have 

received significant scholarly attention (19, 23, 55, 60-62, 75, 112, 134, 207, 208).  

1.1 Expanding the Data Visualization Literacy Framework 

The need for making sense of ever-larger amounts of data has led to a veritable “zoo” 

of visualizations (102) (p. 60) to describe statistical, temporal, geospatial, topical, and 

network datasets. In order to categorize and describe the animals in the “zoo”, many 

frameworks have been developed, including the Data Visualization Literacy Framework 

(DVL-FW), described in depth in section 2.1. It contains seven typologies with 

terminology to describe a variety of data visualizations from the omnipresent, simple, 

static scatter graph, to the visually more complex stacked bar graph, to dynamic, real-

time, 3D dot density maps and network visualizations. These DVL-FW typologies 
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provide language, retrieved and synthesized from prior literature, to construct, 

interpret, and teach data visualizations. One of these seven typologies is the 

interaction typology with nine types as introduced by Börner, Bueckle and Ginda (32) 

and Börner (31), see Table 1 below. In section 2.1.3, we provide an overview of 

previous use cases for the DVL-FW. The user studies in this dissertation describe the 

first application of the DVL-FW to interactive data visualizations in VR.  

Table 1. Interaction types currently captured in the DVL-FW. 

Interactions 

Zoom 

Search and locate 

Filter 

Details on demand 

History 

Extract 

Link and brush 

Projection 

Distortion 

Like the other typologies in the DVL-FW, these interaction types can be used for a 

variety of purposes: analyzing and critiquing existing visualizations; teaching data 

visualization literacy; assessing the usability of data analysis algorithms, visual 

encoding schemes, or interaction techniques; and developing new visualizations. In 

this dissertation, we propose an extension of the interaction typology from nine to 24 

types based on an extended survey of related work from the fields of information 
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visualization, human-computer interaction, informatics, geography, computer science, 

and statistics (see Table 2). We compiled brief definitions and links to prior work for all 

24 interaction types below. Additionally, we reviewed existing interaction typologies in 

section 2.2. Sources for all types listed here can also be found in Table 4. 

Below, we provide descriptions for the interaction types added to the DVL-FW 

interaction typology in this dissertation, and add explanatory language based on the 

DVL-FW (32) with quotes from selected publications defining the interaction type. 

Please note that it is outside of the scope of this dissertation to provide any 

categorizati1ons or groupings for these types, like the proposed by others (103). 

Identifying which interaction types have a natural fit with each other in an internal 

framework for the DVL-FW interaction typology should be the focus of future work.  

Aggregate: "concerns methods that change the granularity of visualization elements" 

(40).  Also refers to collecting many units into one. For example, data can be 

aggregated by ethnicity. 

Animate/replay: when data has a temporal dimension, graphic symbols can be 

displayed based on a time stamp or time value. This allows the user to view data 

traces of events unfolding in real-time or at a range of playback rates, allowing them to 

better identify patterns and trends over time. Says Wilkinson (215):  

“Graphics can be animated over variables intrinsic or extrinsic to the graph [...]. More 

importantly, the user should have control over the frames and be able to pause, move 

forward, or move backward in the animation at will. This can be accomplished with a 

pause button and a slider that the user can move where each tick on the slider 

corresponds to a single frame.” 
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Annotate: "allow textual [or graphical] annotation of states within a visual history" 

(103). Also refers to adding explanatory notes or comments to a visualization. 

Arrange/coordinate views: "enable analysts to see their data from different 

perspectives" (103). Also refers to placing individual views or windows in a 

visualization either completely manually or assisted by an algorithm. 

Derive: "compute new data elements given existing data elements" (40), “summarize 

the input data, ranging from descriptive statistics [...] to model fitting [...] and data 

transformation [...]” (103). In our interpretation, this refers to creating variables based 

on existing ones in the original dataset. 

Details on demand: "Select an item or group and get details when needed" (176). This 

can refer to entire data records or graphical elements representing one or multiple 

variables. 

Distortion: "show portions of the data with a high level of detail and other portions 

with a lower level of detail" (118). 

Extract: "Allow extraction of sub-collections and of the query parameters." (176). This 

can refer to data records and variables but also parameter and widget settings. 

Filter: "focusing on specific information within a graphic. It is usually helpful to see a 

certain graphic under a set of constraints that are defined either by categories or 

ranges of continuous values" (215). 
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Highlight: "focus on certain data points (objects) by giving users the ability to change 

the appearance of object groups in real-time" (57). This refers to the appearance of 

graphic symbols and graphic variables. 

History: "Keep a history of actions to support undo, replay, and progressive 

refinement." (176). This refers to the iterative improvement of the entire data 

visualization. 

Link and brush: "coloring or otherwise highlighting a subset of the data [...and] 

showing information about the highlighted subset in other views" (44). 

Manipulate: "manipulate object set parameters through object handles. Direct 

manipulation refers to operating directly on objects instead of through menus or 

dialogues." (57). Specifically, we consider adjusting position, rotation, and scale of 

objects (graphic symbols) to be manipulation by interacting with graphic symbols. 

Navigate: "visualizations often function as viewports onto an information space. 

Analysts need to manipulate these viewports to navigate the space", "One common 

pattern of navigation adheres to the widely cited visual information-seeking mantra: 

'Overview first, zoom and filter, then details-on-demand'" (Heer and Shneiderman 

(103), citing Shneiderman (176)). 

Overview: "Gain an overview of the entire collection" (176). We understand this as the 

ability to quickly get a bird's-eye view of an entire dataset with the option of having 

context + focus tools. 
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Pan: "change the geographic center of the cartographic representation" (163), "shift the 

start of the value range to be shown" (212). 

Projection: "set or change the cartographic projection used for the cartographic 

representation" (163); another good example are "parallel coordinates" (118). We 

understand this as the ability to adjust the reference system of the visualization from, 

e.g., a Cartesian to a polar or parallel coordinate system. 

Record: "To support iterative analysis, visual analysis tools can record [i.e., capture] 

and visualize analysts’ interaction histories" (103), "save or capture visualization 

elements as persistent artefacts" (40). 

Relate: "View relationships among items" (176). We understand this as the ability to 

turn links in a visualization on and off, or manually create new links. 

Search and locate: Neither source for this type provides a definition (31, 32). We 

consider Search and Locate the activity of identifying a data record by using phrases 

in a search interface, ranging from simple words to complex queries. In the case of 

Search and locate, the user already knows exactly what item they are looking for.  

Select: "demarcation of one or more elements in a visualization, differentiating 

selected from unselected elements" (40). 

Sort: "Ordering [...] is another fundamental operation within a visualization [...]. The 

most common method of ordering is to sort records according to the value of one or 

more variables" (103). 
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Visualize/encode: "show me a different representation" (218), "specify a visualization 

of data: analysts must indicate which data is to be shown and how it should be 

depicted" (103). We understand this as the ability to adjust the mapping of data 

variables to graphic variables of graphic symbols, either for the whole visualization or 

just a subset of data. It can also mean the change of the visualization type. 

Zoom: "change the scale and/or resolution of the cartographic representation" (163), 

"Through zooming, users can simply change the scale of a representation so that they 

can see an overview of a larger data set (using zoom-out) or the detailed view of a 

smaller data set (using zoom-in). A key point here is that the representation is not 

fundamentally altered during zooming" (218). This can also mean "semantic zoom" 

where the granularity of the data on display is adjusted rather than the visual 

representation of that data. 
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Table 2. Proposed expanded interaction typology of the DVL-FW. Interaction types 
previously not in the DVL-FW interaction typology are bold. A more detailed alignment of 
interaction types across frameworks is shown in Table 4.  
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In the user studies in this dissertation, we gave 152 subjects across these studies 

various cube-matching (RUI and RUI (VR) Reflective user studies, see chapters 5 and 6) 

and movement tasks (Luddy (VR) study, see chapter 7) while measuring performance 

for completion time (all studies) and accuracy (chapters 5 and 6 only). The user 

studies in chapters 5 and 6 constitute one dataset, but the results from chapter 5 are 

also presented on their own as the solution to an applied research problem. The 

subjects from the study then served as control cohort for the study in chapter 6. We 

tasked the experiment cohorts in the RUI VR Reflective and Luddy VR studies to 

inspect their performance using an interactive VR data visualization during a segment 

about half-way through the experiment, which we called the “Reflective phase.” 

Specifically interested in expanding the DVL-FW interaction typology, we applied four 

interactivity types for interventions in VR using data visualizations in the Reflective 

phases of these two studies:  

• Filter (already in the typology)  

Refers to the act of "focusing on specific information within a graphic. It is 

usually helpful to see a certain graphic under a set of constraints that are 

defined either by categories or ranges of continuous values" (215). 

• Link and brush (already in the typology) 

Refers to "coloring or otherwise highlighting a subset of the data [...and] 

showing information about the highlighted subset in other views" (44). 

• Navigate (newly added) 

Refers to the following: "visualizations often function as viewports onto an 

information space. Analysts need to manipulate these viewports to navigate the 

space", "One common pattern of navigation adheres to the widely cited visual 
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information-seeking mantra: 'Overview first, zoom and filter, then details-on-

demand'", quote by Heer and Shneiderman (103), citing Shneiderman (176). 

• Animate/replay (newly added) 

“Graphics can be animated over variables intrinsic or extrinsic to the graph [...]. 

More importantly, the user should have control over the frames and be able to 

pause, move forward, or move backward in the animation at will. This can be 

accomplished with a pause button and a slider that the user can move where 

each tick on the slider corresponds to a single frame.” (215) 

1.2 Rationale for choosing these interaction types 

Table 2 above indicates which interactivity type was implemented in which user study. 

We selected “filter” and “link and brush”, because they are interaction types 

frequently mentioned in the literature reviewed for this dissertation (see section 2.2), 

and because both are already part of the DVL-FW interaction typology. Further, we 

consider these two types fundamental for decluttering large, spatial datasets, thus 

greatly helping making sense of visualizations in VR.  

We selected “navigate”, because we argue that it suits data visualizations in VR 

naturally, because it describes the act of moving around a dataset to inspect it from 

different angles, either through different windows (in a screen-based visualization) or, 

quite literally, through adjusting one’s physical position regards to the dataset in VR. 

The “navigate” interaction type is thus specifically useful for geospatial insight needs. 

Because VR is unique suited for visualizing data that is already spatial by nature, 

navigate is a fitting interaction type for a visualization deployed to VR. Contrary to, 

e.g., viewing a scatter graph printed inside a book, viewing a visualization in VR is 
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never the same from one moment to another. Even if the visualization itself is static, 

i.e., the graphic symbols that make up the visualization do not change any of their 

properties (such as position, size, or color), the user constantly “navigates” around it, 

i.e., changes their perspective and, thus, what is being shown to them at any given 

moment. Navigation is thus a natural interaction type already built into VR, without 

the need for designing a specific control scheme to move around a dataset (like one 

would for a keyboard and mouse interface).  

Finally, we chose to implement “Animate/replay” to allow the users in our RUI VR 

Reflective study (see chapter 6) to inspect the temporal dimension of the dataset 

presented to them. Because animations are based on time and motion, and because 

the datasets generated in this study focused on completion time as well as position 

and rotation accuracy, this interaction type appeared to be well-suited to allow 

insights into the user’s understanding of temporal relationships over time. Note that 

we decided to give our users a different way of gaining insights into these relationships 

is the Luddy VR study (see chapter 7), where we visualized completion times in a bar 

graph instead.  

1.3 Interaction types implemented in user studies in this dissertation 

While we describe the implementation of these interaction types in detail in the 

corresponding chapters, with a brief, high-level overview of our user studies presented 

in chapter 4, we provide a brief summary for each type with examples of user interface 

(UI) elements that commonly accompany the interaction type below. The 

implementation of all four interaction types is explained in sections 6.3.3 and 7.5.  

Filter: 
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• Type 1: Checkboxes (binary): 

Simple checkboxes (see Figure 1A) let the user turn parts of the data overlay on 

and off. Checkboxes correspond to a predetermined subset of the data on 

display, i.e., the designer has determined what data is affected by the 

interaction beforehand.  

• Type 2: Time slider (range): 

A time slider (see Figure 1B) allows the user to show or hide data based on the 

time stamp associated with a data record. It offers more control about what 

kind of data the interaction affects. Furthermore, the time slider can be used for 

another interaction type: animate/replay, see below.  

    

Figure 1. A: checkboxes to turn parts of the data overlay on and off. B: time slider, 
adjusted via the user's input on the thumbpad of the VR controller. 

Animate/replay: Animations are a powerful interactive technique in data 

visualizations and can help the user see trends, uncover patterns, and understand 

transitions over time. Animate/replay allows the user to view events unfolding in real-

time or at a custom playback speed, allowing them to better identify patterns and 

trends over time. This is different from filtering in that with a time filter, the user 
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manually moves a time slider, system executes the user input, and the data vis 

changes one step at a time (similar for a time range filter). With animate/replay, the 

user controls not a time filter but a play head that allows them to go through the data 

in real-time or at any desired rate. When using the play head, the user can skip 

through the dataset at varying speeds, depending on their input (see Figure 1B). This 

can be observed in everyday life when watching, e.g., a YouTube video: the user can 

skim through the video to search for a particular time stamp by looking at the video 

frame displayed to them (time filter), or they can press the play button and watch the 

video in real-time (or at a faster/slower rate). The difference between these two 

interactions with a YouTube mirrors the difference between animate/replay and filter. 

While the animate/replay type is not part of the DVL-FW yet, it is mentioned in 

relevant literature and should be added to the interaction typology (215). The 

implementation of the animate/replay type is explained in chapter 6.  

 



17 

 

Figure 2. Link and brush example. When the user hovers over a bar in the bar graph of 
completion times, the corresponding checkbox for a task is highlighted, and vice versa. 

Link and brush: This technique (also called coupled windows) highlights a subset of 

data in one visualization while the user hovers over or otherwise interacts with a data 

selection in another visualization or a UI element in a menu. It enables the user to 

detect connections between data subsets through providing an intuitive way of 

interacting with visualizations by virtue of menus, even in advanced, dynamic, 

multivariate visualizations such as the VR ones we use in the Reflective phase of our 

Luddy VR user study on navigation (see chapter 7). The presence of link and brush 

highlights another feature of our Reflective phase VR visualizations for Luddy VR: By 

bringing in a traditional, static bar graph of task completion times, we allow the user 

to explore a complex spatial dataset (their own) in VR while being able to retrieve 

metadata about their performance with the familiarity and proven effectiveness of the 

visual encoding of bar graphs, specifically, position and length (59, 101). The 

implementation of link and brush in this dissertation is explained in chapter 7.  

Navigate: This technique can be implemented in different ways, depending on 

visualization type. It can be a general collection of other interaction techniques to 

traverse the continuum from overview to detail (103) or, more literally, to move around 

2D and 3D virtual space to view a visualization from different angles (215). In the 

Reflective phase of our user studies, the ability to navigate is an inseparable part of 

being in VR where the user’s body movements are tracked and the virtual camera is 

adjusted according to the user’s head position and rotation. Navigation thus becomes 

an essential interaction technique for any VR visualization. It bears a somewhat 
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surprising similarity to filtering in that it “moves about the graphic, while filtering 

moves around the data” (p. 555) (215). 

1.4 Goal of this dissertation 

While data visualization is a field rich with frameworks and other formalizations for 

how data visualizations are built, used, and taught, what visual encodings to use, and 

how user tasks can be defined (31, 87, 89, 146), interactions have not gotten the same 

attention as remarked elsewhere in the literature (81, 218). We thus propose an 

extension of the DVL-FW interaction typology and process model (31, 32, 35). The 

goals of this dissertation are thus:  

• To expand the interaction types section of the DVL-FW to be inclusive of 

more interaction types essential to 3D and dynamic visualizations, 

specifically animate/replay and navigate (also filter, and link and 

brush).  

• To produce data-based design recommendations for data visualizations 

in VR by comparing task completion time, accuracy, and satisfaction in 

user studies for various interaction types in VR compared to screen-

deployed (Desktop) implementations of the same data visualization, and 

for improving performance metrics when completing matching and 

movement tasks in VR 

• To develop code and methodology to conduct user studies in the game 

engine Unity 3D, a real-time 3D development platform (200) 
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The visualizations created for the user studies in this dissertation constitute the first 

time that data visualizations in VR were designed based on the DVL-FW, which, while 

able to characterize the data visualization process for static visualizations and a 

subset of dynamic, interactive visualizations, lacks the ability to describe similar work 

for VR. Expanding the DVL-FW will be carried out as follows:  

Chapter 2 presents related work. We summarize the DVL-FW in its current form and 

propose an extension of its interaction typology in the form of the Data Visualization 

Literacy Interaction Component in section 2.1. Subsequently, in section 2.2, we review 

prior work a on interaction in data visualization in general (section 2.2.1) and present 

a synthesized view of interaction types (section 2.2.2). Next, we discuss related work 

for interaction types for VR specifically (section 2.3). Because this dissertation 

contains human-subject research, we then review VR user study methodologies 

(section 2.4). Over the course of chapter 2, we synthesize the findings of our literature 

review with a review of exemplars from the world of VR applications (such as video 

games) into a theoretical extension of the DVL-FW. This enhanced DVL-FW interaction 

typology forms the basis for our research questions (see chapter 3) as well as chapters 

5, 6, and 7, where we present the design and results from our user studies. We 

conclude this dissertation with a Discussion containing recommendations, major 

challenges, and pointers to future in chapter 8.  

The following elements provide additional information for the theoretical core of our 

contribution as well as the user studies presented:  

A Glossary (p. 283) provides the definitions of domain-specific terms potentially not 

familiar to all readers.  
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High-resolution versions of all figures are available on GitHub 

(https://github.com/andreasbueckle/bueckle-dissertation-supporting-

information/tree/main/high_res_figs). 

Supporting Information (starting on p. 289) contains study information sheets, data 

collection instruments, and recruitment materials from the user studies. We added 

code from our experiments, written in C# for Unity, and videos demonstrating the VR 

setups and study procedures to the GitHub repository to illustrate how our studies 

were run and how subjects experienced the tasks and data presented to them 

(https://github.com/andreasbueckle/bueckle-dissertation-supporting-information).  

  

https://github.com/andreasbueckle/bueckle-dissertation-supporting-information/tree/main/high_res_figs
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information/tree/main/high_res_figs
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information
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2. Related Work 

In this chapter, we review prior work, including the DVL-FW, interaction types in data 

and information visualization, both in VR and on traditional interfaces. Further, 

because this dissertation contains results from user studies, we review VR user study 

methodology in terms of the equipment used, sample sizes, research questions, and 

study instruments. We conclude this chapter with an overview of best-practice 

exemplars for interaction and interface design in commercial products such as video 

games.  

2.1 The Data Visualization Literacy Framework 

First, we provide an in-depth review of the DVL-FW, specifically the definitions it 

contains, the seven typologies, and prior use cases.   

2.1.1 Definitions 

The DVL-FW (32) has been developed to “define, teach, and assess [data visualization 

literacy]” (p. 1857). As data becomes increasingly prevalent in our everyday lives, skills 

relating to the understanding of trends, patterns, and structures of temporal, 

geospatial, topical, and network data are increasingly important for professional and 

personal decision-making. Unlike other literacy types such as numeracy (150, 158), 

textual literacy (151), or visual literacy (16, 18, 93, 100), data visualization literacy has 

seen formal assessment attempts only very recently. Boy et al. (39) proposed two tests 

for visualization literacy with line graphs using item response theory, successfully 

validating their model with a user study involving 40 subjects on Amazon Mechanical 

Turk (MTurk, https://www.mturk.com/). With similar methodological goals, Lee, Kim 

and Kwon (127) employ test development in psychology and education to develop the 

https://www.mturk.com/
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Visual Literacy Assessment Test (VLAT), designed to measure how non-expert users 

interpret data visualizations. They validate their test, consisting of 12 data 

visualizations, 53 multiple-choice items, and eight visualization tasks, using input 

from five domain experts in data visualization and a user study with 191 MTurk 

subjects to show a high reliability.  

Other work has been performed to characterize the sense-making process when facing 

data visualizations. Lee et al. (126) presented the NOVIS model to capture how users 

make sense of unfamiliar data visualizations (in this case, parallel coordinate plots, 

chord diagrams, and tree maps) using think-aloud sessions. They identify five steps in 

the sense-making process for unfamiliar visualizations: encountering visualization, 

constructing a frame, exploring visualization, questioning the frame, floundering on 

visualization, alongside miscellaneous activities. Similarly, Maltese, Harsh and Svetina 

(131) assessed data visualization literacy on the novice-expert continuum with 202 

participants, finding significant gaps between groups on opposite sides of the 

spectrum but little between those in the middle. Börner et al. (34) investigated the 

data visualization literacy of 273 museum visitors in four US science museums, 

asking subjects to, e.g., name visualization types and describe what kind of data they 

would be useful for. Their findings reveal the extent to which many users are not able 

to even name a visualization while highlighting the lack of a common terminology for 

all but the basic types.  

Other researchers have focused on designing interventions to teach visualization 

literacy in formal and informal educational settings. Alper et al. (9) developed C’est la 

Vis, a tablet-deployed learning experience for elementary school children. Using 
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pictograms and bar charts, concreteness fading skills are trained when transforming 

individual elements (pictograms) to more abstract bar charts via the 2D interface. 

Observing touch interactivity, verbal activity, and class dynamics, they find high levels 

of interaction with the app, an ample amount of communication between subjects 

(often for assisting each other), and short but not significant disruptions of the 

classroom through the app. Beheshti et al. (26), while not strictly focusing on data 

visualization, present Spark, a science museum experience about electronic circuits in 

three conditions: single-display (static), single-display (animated), and AR. Users built 

virtual circuits and were then shown animations of electron flow in the wires (except in 

the static condition). The authors then tested understanding and collaborative 

practices in 60 parent-child dyads, and find that children performed better in the non-

static conditions and that parents in the AR condition were more likely to adopt the 

role of a co-learner rather than an educator.  

2.1.2 Typology & process model 

At the core of the DVL-FW, there are seven typologies to capture building blocks of 

data visualizations, see Table 3.   
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Table 3. DVL-FW typology as it appears in Börner, Bueckle and Ginda (32). 

 

These types were previously defined in the Atlas of Knowledge (31), an extensive review 

of prior literature on data visualization, statistics, and best-practice examples from 

applied data visualizations spanning a variety of disciplines such as economics, library 

science, and geo science. Due to its nature as a book, the Atlas is limited to static, 

paper- or screen-based visualizations, thus demonstrating a lack of exemplars 

involving interactions.  

Insight needs (Table 3, first column), also called basic task types, constitute the 

objectives that users of data visualizations like to achieve. Frameworks for categorizing 

insight needs have previously been proposed by authors in data visualization (40, 87) 

and geography (28). Due to the abstract semantics of task types, there is little 

agreement on how to properly categorize them, and in what granularity they should be 

described or grouped.  

Data scales, on the other hand, are more clearly defined. This typology captures 

whether data is quantitative (ordinal, interval, ratio) or qualitative (categorical). Since 
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data scales are more low-level and less dependent on semantics, they can be tied quite 

directly to different types of datasets.  

In the DVL-FW, data scales are used to describe a dataset (or a dimension of a 

dataset) through its numerical (or non-numerical) features. Additionally, data scales 

limit or enable mathematical operations (such as transformation) on the data or 

dimension.  

The Analyses typology captures the kinds of transformations to be performed on 

datasets before visualizations. Statistical analyses are often necessary to create 

anything but the most basic visualizations from an already heavily adapted or 

simplified dataset. Depending on the nature of the insight needs of a user, these 

analyses can be purely statistical, or they can be more complex, e.g., temporal trends, 

geospatial patterns, topical clusters, or relationships. Most datasets must be 

preprocessed in some way before being visualized.  

The visualizations typology captures visualization types. The DVL-FW distinguishes 

between tables, charts, graphs, maps, trees, and network visualizations. Tables offer a 

simple yet powerful way of visualizing data via rows and columns, and there has been 

research on how to make them even more powerful through adding interaction (157). 

Graphs are another omnipresent type, with essential subtypes being scatter graphs, 

boxplots, and line graphs. Charts work similar to graphs but lack a clearly defined 

reference system; a good example is the pie chart. Maps are another type well-known 

to the general public due to their prevalence in the news media, school books, and the 

internet, with particularly high exposure during major historical events, such as 

presidential elections (147, 148) and public health emergencies (54, 76). Finally, 
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network visualizations (and one of its subtypes, the tree) give visual form to 

relationships among items, using nodes and edges (links). Oftentimes, nodes that 

share features are arranged close together to reflect local similarity. The terminology 

used to describe the very basic building blocks for visualization types also stems from 

the work of cartography: reference system, or base map, and data overlay. Reference 

systems describe a space into which data is plotted according to mapping rules; the 

most prominent ones are the Cartesian (x-y-z) and the polar coordinate system (albeit 

much harder to read). Two-dimensional reference systems provide a horizontal and a 

vertical dimension (see Figure 3), and they are most commonly used for geographic 

maps in atlases in navigation systems.  

 

Figure 3. Reference systems across visualization types (32). 

There is an extensive body of research on the cognitive processes involved to 

deconstruct visualizations for extracting insights, ranging from spatial memory (121, 

194) to “graph schemas“ (153) and graph comprehension (171). What we know about 

how humans interpret visualizations in turn affects the way we construct 

visualizations to communicate insights.  

The next two categories in the DVL-FW typology, graphic symbols and graphic 

variables, see Figure 4, refer to the visual encoding of data variables. Alternative 
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names for graphic symbols and graphic variables are marks and channels (28, 146). 

Graphic symbols such as points, lines, areas, volumes, and text are paired with 

graphic variables such as color, position, and size in order to represent data visually 

as a data overlay within a reference system. The process of mapping data to points, 

lines, areas, volumes, etc. is called visual encoding. Not all visualizations support all 

graphic symbol-variable pairings. For example, the graphic variable of motion is not 

supported on a static visualization printed on paper. Similarly, stereoscopic depth is 

not supported on monoscopic media. There is a wealth of research on the strength of 

graphic variables with regards to human cognition. In a landmark user study, 

Cleveland and McGill (59) identified position and length as the graphic variables best-

suited for human use (hence the prevalence of scatter graphs and bar charts), with 

rotation and area least-suited. Heer and Bostock (101) later ran similar studies using 

a crowdsourcing setup. Kim and Heer (119) performed user studies linking visual 

encodings to task types.  
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Figure 4. Selection of four graphic symbols and 11 variables from a total of 11 graphic 
symbols and 24 graphic variables from Börner, Bueckle and Ginda (32). Qualitative 
variables are marked with a grey triangle.  

Lastly, the interactions typology, see Table 3, column 7, contains techniques to allow 

users to manipulate data views, change visual encodings, and otherwise change the 

state of a data visualization through pre-defined input parameters. The interaction 

typology in the DVL-FW consists of nine elements, which were in turn collected from a 

literature survey.  

Categorizations of interactions in data visualizations have previously been proposed. 

Heer and Shneiderman (103), in a survey of relevant literature and prominent 

visualization tools, identified 12 interaction types, grouped into three categories: data 

& view specification, view manipulation, and process & provenance. The types in the 
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data & view specification and view manipulation categories are roughly covered by the 

existing DVL-FW interaction typology, but process & provenance (record, annotate, 

share, guide) are not. Regardless of the goal of an interaction, for optimal usability 

(31), interactions should be “[r]apid, incremental, and reversible” (p. 68). 

Interactions are the focus of this dissertation, and we consider the extension of this 

typology one of the main contributions to data visualization theory of this dissertation. 

While the DVL-FW interaction typology captures a variety of interaction techniques 

extracted from an in-depth view of the literature, several important types are missing, 

many of which are extensively used and studied in scientific visualization. In section 

2.1.4, we are investigating potential extensions and improvements of the DVL-FW to 

better capture data visualizations outside of the Desktop metaphor. Another essential 

element of the DVL-FW is its process model (DVL-FW PM). It summarizes how data 

visualizations are constructed through repeated steps. Specifically, it encapsulates the 

cyclical nature of how data is transformed into visual insights while interlinking the 

seven typologies shown in Table 3 to steps in the workflow, see Figure 5.   
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Figure 5. DVL-FW process model by Börner, Bueckle, & Ginda (32) 

The PM begins and ends with the stakeholders and their identified insight needs. 

Oftentimes, broadly formulated questions about data need to be transformed into 

answerable questions before the process can begin. This process of translating real-

world needs into a workflow process is called operationalization; it guides the 

subsequent step where data needs to be acquired that is likely to satisfy the 

stakeholders’ insight needs. While terminology may vary, this initial process is 

captured in a variety of other workflow descriptions as well. Elsewhere in the literature 

(89), the operationalization of a question is described as a division into subtasks, or 

proxy tasks, to gain a more low-level understanding of what is required of the 

visualization, aided by proxy values, which are measures in the data set that contain 

information about a desired value. For example, if one asks: “Which superhero movie 

was the most popular in 2018?”, box office numbers would serve as a proxy values for 

answering this question.  

A crucial improvement of the most recent DVL-FW PM (32) over previous versions (31, 

35) is the alignment of the seven typologies into the workflow. Insight needs (Table 3, 

column 1) need to be investigated when working with the stakeholders at the onset of 

the data visualization process. Data scales (column 2) and analyses (column 3) are 

applied when acquiring data upon input from the stakeholders, and then analyzing 

them, respectively. The visualization process proper consist of two steps: picking a 

reference system and designing a data overlay, echoing the role of reference system 

and data overlay as the two primary building blocks of a visualization. The typologies 

of visualization types (column 4), graphic symbols (column 5), and graphic variables 

(column 6) are then used to construct a set of visualizations based on prior steps in 
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the workflow. Finally, in the deployment phase, interactions are implemented to match 

functionality with a target output medium. Not all interactions are possible for all 

deployment methods; for example, a printed visualization cannot support the 

interaction type of link and brush, where the user highlights a subset of data in one 

view and then sees it dynamically highlighted in another view as well. However, some 

interaction types that are primarily used in interactive media can be supported on 

static media but with a twist. Consider, for example, the ample use of maps in atlases 

where the user is presented with one large reference map and several detail views of 

particular regions of interest. Figure 6. The detail view in Figure 6B is similar to the 

result produced by interactive zooming, but does not require input via a mouse, as it 

would in a web interface, but shifting the user’s focus or flipping a page. Sea charts for 

nautical navigation, for example, are published and updated regularly as part of the 

marine operations of every seafaring nation. These maps come at various scales to 

empower users with different kinds of insight needs. Some maps cover territories on a 

very large scale, allowing mariners to plan long-haul trajectories by providing 

important navigational information for entire regions; smaller-scale maps with more 

local information then enable seafarers to navigate coasts, waterways, ports, and 

traffic separation schemes in a local context. This practice predates interactive data 

visualization.  
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Figure 6. A: NGA Nautical Chart 400, West Indies, showing Florida in the north, the 
northern tip of South America to the south, and Mexico to the west. B: Pasaje des 
Vieques and Radas Roosevelt, which is also shown in A but in much less detail (pink 
arrow).  

Interpretation and translation then are the last steps in the DVL-FW PM. During this 

phase, the visualizations created with particular insight needs in mind are brought 

back to the stakeholders. They are then able to evaluate how well their insight needs 

were satisfied, often with input from the visualization designer explaining the 

reasoning behind design decisions.  

2.1.3 Validation & usage 

The DVL-FW has been used in a variety of settings: research, exhibit design, and 

education. The theoretical advancement and consolidation of the DVL-FW has been 

developed in the scholarly literature. The Atlas of Knowledge (31) is a large-format 

book containing dozens of best-practice examples of (mostly static) visualizations, 

structured around the typologies of the DVL-FW in high detail alongside relevant 

domain application-specific terminology. The most recent version of the DVL-FW has 

been described and published in a major journal (32). Research involving the DVL-FW 
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has been conducted on online education (82), informal science education (34), and the 

use of base maps for topical and geospatial visualization with user studies (36) and 

learning sciences research, specifically “Make-a-Vis,” an online learning tool for data 

visualization based on the DVL-FW where users can drag-and-drop data records to 

graphic symbols and graphic variables (33, 69). 

Furthermore, the DVL-FW has informed the design, optimization, and evaluation of 

the Information Visualization Massive Open Online Course (IVMOOC), a free, web-

based class for teaching the basics of data visualization to anyone with an internet 

connection (82). An accompanying textbook presents the structure of the course as it 

covers contents on temporal, geospatial, topical, and network visualization over 

several weeks (35). More recently, the content of the IVMOOC has been updated for 

the Visual Analytics Certificate (VAC), a shorter, 6-week online course focusing on 

professional education for professionals who seek to learn critical data visualization 

and analytics skills over a variety of industries, including for-profit, non-profit, and 

government (69). Two pieces of software have been developed around the DVL-FW as 

teaching tools for these classes: Make-a-Vis and Sci2 (67, 169).  

The Places & Spaces: Mapping Science exhibit is an annually updated collection of 

data visualization work from researchers and artists, aiming at presenting 

visualizations to audiences in informal education environments (68). Currently in its 

16th iteration, Places & Spaces contains printed posters implementing a variety of 

visualization types, including but not limited to maps, bar charts, networks, and 

combinations thereof. Beginning with the 11th iteration, in 2015, macroscopes have 

been added to the collection. Macroscopes are interactive, web-deployed visualizations, 
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allowing users to dynamically interact with datasets on migrant flow (2), the 3D layout 

of galaxies in the universe (7), and the smell of physical locations in cities across the 

world (155), among many other application domains. Deployed on large touch 

displays, visualizations in the Places & Spaces exhibit are shared with users all 

around the world every year (66). Currently, Places & Spaces includes 20 of these 

macroscopes. 

2.1.4 Expanding interaction elements 

In this dissertation, we address a shortcoming of the DVL-FW: It is mostly focused on 

visualizations with two-dimensional reference systems. While 3D position is a 

supported graphic variable in the graphic variable typology and the Atlas of Knowledge 

(31) mentions several interactive visualizations, the best-practice visualizations 

reviewed in the literature published on the DVL-FW so far are almost exclusively static 

and 2D. Presumably, there are two reasons for this. First, books and papers naturally 

favor static visualizations that can be represented well on the two-dimensional, high-

resolution medium of printed books. Second, the inclusion of a third spatial dimension 

has always been met with caution in the field of information visualization. All too 

often, the third dimension is added to natural two-dimensional reference systems 

without adding any value beyond aesthetics, the advantages of which are highly 

debatable. Few (87), in his chapter on general graph design, examines a range of 3D 

bar charts and line graphs (to be found, for example, in Microsoft Excel), and bluntly 

advises readers to “[a]void 3-D displays of quantitative data” (p. 203). Similarly, 

Munzner (146) warns of the “disparity of depth” (p. 118) where the human ability to 

judge length, shown to be one of the most powerful graphic variables on the x-y plane 

(59), works nowhere near as well on the z-plane, i.e., depth. Quoting Ware (213), she 
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emphasizes that even though we live in a three-dimensional world, our perception of 

width and height is far more advanced than our understanding of depth, and thus 

insinuates that we experience life in a “2.05D” world (p. 119). Occlusion, the 

phenomenon where objects that are farther away seemingly disappear behind closer 

objects, is a standard experience for humans with functioning eyesight. In data 

visualization, it becomes a problem as data items might simply not be immediately 

visible, necessitating the implementation of navigation to view data from different 

angles. An additional depth cue (and challenge for data visualization) is the 

phenomenon of perspective distortion or foreshortening. Objects that are farther away 

seem smaller. Because size (i.e., length) is such an essential graphic variable, this 

means that if two graphic symbols of the same size are rendered in a visualization 

where one of them is farther away from the user’s viewpoint than the other one, they 

will (falsely) appear to be of different sizes, thus producing inaccurate results for the 

viewer. To counteract the confusing effect of unwanted perspective distortion, there 

exists a variety of tools. A popular one is orthographic projection, a method where 

objects maintain their size no matter the distance from the viewer (see Figure 7).   
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Figure 7. A: Unity (200) scene with two same-size cubes where the blue one is ~10 scene 
units, i.e., meters in real-world scale, behind the pink one. Distance between pink cube 
and camera: ~1.7 scene units. B: same cubes, same distances but with orthographic 
projection. Notice how the size is preserved in B while in A, the pink one seems much 
larger than the blue one due to foreshortening. 

Of course, applying navigation and orthographic projection to counteract the 

negative perceptional effects of these depth cues can be detrimental to the 

visualization. After all, many 3D visualizations embody the spatial structure of data, 

thus making use of our immense visual abilities. Flattening a data visualization 

through orthographic projection, while combating the issue of perspective distortion, 

also takes away a crucial piece of the visual encoding. Further, advanced interaction 

techniques such as 3D navigation cost two valuable resources: time and cognitive 

effort, as Munzner (146) remarks in her chapter on “No unjustified 3D” (p. 117). After 

all, interaction types often involve complex input and can have a steep learning curve.  

In its current version, the DVL-FW offers limited language that allows us to formulate 

questions surrounding navigate and animate/replay. Neither of these interaction 

techniques are mentioned in the current DVL-FW interaction typology and are 

additions proposed in this dissertation. Thus, the interaction typology of the DVL-FW 

is limited and will be expanded for non-2D visualizations. This is in contrast to, e.g., 

the graphic variable typology, where clearly non-2D and/or non-static examples such 

as stereoscopic depth, velocity, and speed are listed as retinal variables. To 

understand the full range of interaction techniques in data visualization, a literature 

review in section 2.2 provides the basis for an integrated overview of interaction 

taxonomies in Table 4. In three user studies (chapters 5, 6, and 7), we will then 

investigate the use of two new interaction techniques new to the DVL-FW (navigate, 

animate/replay) and two old ones (filter, link and brush). Further, to avoid pitfalls in 
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VR research design, we perform a literature review of VR user study methodology in 

section 2.4. In expanding the DVL-FW interaction typology, we further aim to 

introduce a DVL-FW interaction model according to Beaudouin-Lafon (24), 

specifically a “framework for guiding designers, developers, and even users […] to 

create interactive systems” (p. 16), and that can be “evaluated along three dimensions: 

descriptive […], evaluative [, and] generative power” (p. 17, highlights added by this 

author). Considering interaction models from these three angles provides us with the 

ability to formulate research questions that we can then answer with a variety of 

methods, including user studies. The following questions highlight the goal of each 

dimension.  

Descriptive: How well can our interaction model inform the operationalization process 

by describing a range of existing interfaces? This dimension is essential for the 

operationalization of insight needs, as an early exploration of interface options can 

guide the early stages of a visualization cycle. Best-practice examples can then be 

incorporated to make informed decisions about what data should be supported for 

visualization. Additionally, a terminology can be compiled to discuss existing and 

planned work with a common vocabulary. We add to the descriptive component 

through an in-depth study of VR interaction exemplars in section 2.5.  

Evaluative: How well can our model help us evaluate alternative designs when 

translating our work back to our stakeholders at the end of a visualization cycle? This 

component needs to be contextual; specifically, it is paramount to only compare and 

evaluate against each other interfaces that share a set of common features. We build 

this component by comparing two essential deployment methods in user study 1 (see 



38 

 

chapter 5): Desktop and VR, two different media that are, however, comparable on the 

basis of user input, task completion time, accuracy, and user satisfaction. Further, 

the user studies in chapters 6 and 7 contribute to our evaluative component through 

testing the power of an intervention for improving performance for a control and an 

experiment cohort of users.  

Generative: How well can our model provide guidelines for the visualization process, 

specifically the various interface design choices that need to be made? The ability of a 

model to be used by designer and other practitioners when implementing 

visualizations is of paramount importance. There is little prior research on best-

practice rules for implementing data visualizations in VR, and a generative dimension 

of a VR interaction model could greatly help fill this void. We build this component by 

translating insights from our user studies into VR design recommendations in chapter 

8. The generative component thus follows from a combination of the descriptive and 

evaluative components.  

2.2 Interaction types in data visualization frameworks 

The literature review for this dissertation consists of three parts: a brief overview of 

general frameworks and interaction typologies to outline previous attempts of 

formalizing interactions for data visualizations; VR user study methodologies; and the 

challenges of a third spatial dimension, i.e., 3D, in data visualizations in general and 

for VR in particular. We chose these three rather distinct areas of study in order to 

address three fundamental challenges when using VR for the visual representation of 

information:  
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First, this dissertation focuses on the use of VR for the visual display of data 

specifically (rather than, e.g., the use of VR in entertainment). We thus aim to 

investigate how VR can be understood as a medium in the growing arsenal of 

traditional data visualization, and begin with a brief overview of data visualization 

frameworks in this chapter, specifically synthesizing previous approaches to 

categorizing interaction types. We are particularly interested in exploring and 

summarizing the rationale and the guidelines by which researchers have previously 

tried to group interactions with data. After investigating existing typologies for various 

interactions (such as the quasi-standard zoom, filter, and link and brush) in section 

2.1.1, we present an integrated overview of interaction taxonomies in tabular form in 

section 2.2.2 (Table 4). Additionally, previous work for interactions in VR is identified 

and synthesized in section 2.3. 

Second, the rich data coming out of VR user studies and the relative novelty of VR as a 

subject of user studies pose a methodological challenge that needs to be addressed by 

building on prior research, see section 2.3.3. Here, this dissertation investigates 

methodological questions and answers as identified by other researchers with regards 

to VR user studies. This serves as a preparation for the experimental part of this 

dissertation, identifying best-practices and pitfalls when collecting data from human 

subjects.  

Third, we postulate the inherent spatial three-dimensionality of VR negates much of 

the visual simplicity that constitutes one of the key strengths of traditional data 

visualization by not only providing a multidimensional display, i.e., visual depth, but 

also requiring multidimensional user input in the form of VR controllers, a device 
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capable of higher-dimensional input than a mouse and a keyboard. This is reflected in 

a variety of previous work.  

2.2.1 Overview 

In this section, we investigate the following:  

• There is an agreement that interactions are not properly investigated in 

information visualization literature.  

• Existing interaction frameworks categorize interactions in various ways, making 

cross-framework comparisons difficult.  

• There is little guidance on how to develop interactions with data in VR. What 

exists is situational and often dependent on domain application.   

In order to formalize how data visualizations are constructed, interpreted, and taught, 

a variety of frameworks have been proposed over the past decades. While providing a 

comprehensive review of the full history of formalizing data visualizations is out of 

scope for this dissertation, a select few seminal writings of importance for the field are 

referenced here. Jacques Bertin’s Semiology of Graphics: Diagrams, Networks, Maps 

(28) is generally cited as having coined the terms marks and channels to describe the 

two elements of visual encodings used in data visualization: graphic icons (such as 

points, lines, and other geometric primitives) alongside properties such as color, 

position, and size. While other terms are sometimes used, such as graphic symbols 

and graphic variables (31), marks and channels has proven to be a concept that 

endured through the past decades of research as evidenced by its continued use in 

more recently published work (103, 146). Tufte, Goeler and Benson (196) and Tufte 
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(195) approach data visualization from a design perspective with little to no interest in 

underlying data structures.  

There is also a variety of frameworks that have been implemented in software; 

specifically, Wilkinson’s The Grammar of Graphics (215) forms the theoretical basis of 

ggplot2, a data visualization package for the statistical programming language R 

(https://ggplot2.tidyverse.org/) as laid out by Wickham (214). Similarly, Polaris (later 

commercialized as Tableau, https://www.tableau.com/) was built as an extension of 

the Pivot Table interface commonly known from spreadsheet software with the goal of 

enabling users to visually explore large quantities of data (191). Similarly, D3.js (37) 

and its high-level abstractions Vega (167) and Vega-Lite (166) do not constitute data 

visualization frameworks per se; rather, their creators build their software on top of an 

already existing and widely used technology (in this case, the Document Object Model 

of modern websites) and thus leverage their users’ preexisting knowledge of web 

technology to create interactive visualizations in a web browser.  

Between the writings of early data visualization pioneers and publications involving 

more modern hardware and software (such as the web browser), there is a noticeable 

rift in the treatment of interactions. In her textbook Visualization Analysis and Design 

(146), Tamara Munzner argues:  

“[The] hallmarks of the last 20 years of computer-based [visualization] are interactivity 
rather than simply static presentation and the use of [visualization] for exploration of the 
unknown […].” 
 

This is certainly due to the fact that many of the seminal works on data visualizations 

were written for graphs, charts, and maps on paper. Munzner highlights in this brief 

https://ggplot2.tidyverse.org/
https://www.tableau.com/
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quote not only the shift towards more user input to adjust what data visualizations 

show on the spot, but also the role this interactivity has played for the exploration of 

ever larger datasets. This sentiment is echoed by Börner (31), citing the volume and 

complexity of modern datasets as a rationale for interactive data visualizations:  

“Many data sets are too large to fit on one screen or printout. Interaction permits the 
user to first gain a global overview of all the data and then to zoom in to that data […]. 
The structure and dynamics of data can be explored at multiple orders of magnitude. In 
principle, any part of the analysis workflow and any layer of the visualization design 
can be modified via user input.” (p. 68) 

And Unwin (201) comments on the realm of possibilities opened by including 

interaction in data visualizations:  

“Exploratory graphics have in effect unlimited space […] and are primarily only for the 
person who draws them. Presentation graphics are for conveying information, while 
exploratory graphics are for discovering information.” (p. 10) 

Dix and Ellis (73) went so far as to “establish that the heart of modern visualization 

techniques is interaction and propose that interaction can be applied to any 

representation however simple.” (p. 124) 

Those quotes make apparent how interactions with data, and thus, the user as an 

active participant in the data visualization process, became important for the design of 

a data visualization but also that interactions are essential for the exploratory analysis 

of large datasets. Of course, interactions in data visualizations are not limited to the 

narrow scope of visual analysis and statistics, although one could argue the roots of 

interactive visualization lie there as outlined by Friedman and Stuetzle (94) in their 

2002 paper on mathematician John Tukey’s work. But where do interactions fit within 

the workflow underlying data visualization, and how can we conceptualize what 
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constitutes an interaction, exactly? In contrast to tasks in data visualizations where 

there is ample research (11, 12, 40), interactions are less researched in the field (81).  

Interactions are tightly coupled to tasks as well as the underlying data scale types. 

After all, a user who interacts with a visualization is likely going to want to complete a 

task, itself a rather broad term, ranging from simply browsing for new pathways to 

potential insights to answering a very specific question about properties of subsets of 

the data, e.g., the change of a variable over time. Despite all the interdependencies 

between tasks and the underlying data with interactions, and the resulting complex 

network of relationships, basic buildings blocks of the data visualization workflow are 

consistent among a variety of frameworks. While the works reviewed in this chapter 

address a diverse set of issues, three clear themes emerge:  

• Interactions can be related to tasks via a taxonomy 

• Interacting with visualizations can include interacting with the underlying data 

in various levels of abstraction. 

• Interactions need to be defined in such a way that they are independent of their 

actual implementation within a medium so that an interaction theory for data 

visualization can apply to non-traditional media, such as VR.  

The goal of this section of the literature review is to construct an integrated overview 

and alignment of interaction technique taxonomies in the form of a table, see section 

2.2.2. The method for identifying literature consisted of investigating two papers that 

themselves contain expansive literature reviews (40, 218). This part of the literature 

review thus contains references to papers from a variety of disciplines with the 

overarching theme of user interaction in data visualization. We will also briefly explore 
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prior work on input devices as this will provide essential background information for 

our later review of data visualization interaction in VR and VR user study 

methodology.  

Brehmer and Munzner (40) propose a multi-level typology of “domain- and interface-

agnostic” visualization tasks, reviewing around 30 extant classifications from a variety 

of disciplines such as information visualization and human-computer interaction 

(HCI). The authors propose to describe tasks with three distinct but interconnected 

components: why, how, and what, where the why relates to the user’s motivation, 

what defines input and, if applicable, output of the task, and how captures the 

concrete action being taken to perform the task. While their focus is on creating a 

taxonomy for tasks in data visualizations (and not on interactions per se), they include 

11 interaction types as part of the “how?” of their classification, see also Table 4. While 

their typology for visualization tasks is not the only one (11, 12), theirs is based on the 

most through literature review per our knowledge and, as previously mentioned, 

served as a source for literature for this review. In distinguishing between why, how, 

and what, Brehmer and Munzner (40) build heavily on Roth (163), who proposes a 

taxonomy of cartographic interaction primitives. In that framework, there is distinction 

between goals, objectives, operators (actions), and operands (receivers of action) to 

describe any user interaction with granularity. While these four terms roughly 

correspond to the why, how, and what of Munzner & Brehmer’s multi-level typology 

(40), there are a few essential distinctions: First, Roth’s taxonomy terms are relegated 

to cartographic interactions. For example, all his operands are of a spatial dimension. 

While Roth names 30 interaction primitives, only 17 of them contain references to 

actual interactions, with the rest describing goals and receivers of action. Second, the 
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author does not name input and outputs of these primitives. To validate his 

framework, the author performed a card sorting experiment with 15 subjects, all of 

them experts in cartographic interface design and development, with cards having 

objectives and operators, i.e., interactions, written on them. These had been identified 

in expert interviews from a previous experiment as well as by reviewing the literature. 

The author found that there was a much higher variation, i.e., less agreement among 

experts, for the objective cards than for the operator cards. Unsurprisingly, given that 

all the subjects were cartographic interaction designers, the most agreed-upon 

operator was zoom, tightly followed by symbolize and retrieve. While we might expect 

different results if experts outside of cartography had been interviewed and selected as 

participants, the empirical method underlying this framework makes it a valid 

contribution to the investigation of user interactions in data visualization. Roth’s 

proposed interaction types are part of our interaction type overview in Table 4.  

Similarly, in prior work, researchers aimed to build “a cognitive model for user-

network interaction” by presenting a questionnaire to computer network experts, 

asking them to rate the importance of each of the proposed tasks (145). This study 

supported the creation of a mental model for interface usage, and to achieve 

consistent interface design. The authors considered a low-level list of interaction 

techniques (such as transform, zoom, and locate), which later informed the what 

aspect Brehmer & Munzner for their abstract task-based taxonomy (40).  

Another example of a taxonomy based on observation contains the data analysis 

methods of scientists (188). The goal of this study was to develop an overview of 

elements used in data analysis independent of discipline or tools used. In addition to 
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an unspecified number of pre-interviews, authors performed eight observation 

sessions with five scientists from three institutions working with their own data. The 

researchers watched the subjects perform their normal routine while occasionally 

asking for context when observing specific actions that they felt needed further 

explanation for someone outside of the subject’s domain. Based on this study, the 

authors propose a framework for scientific data analysis, broken down into a 

hierarchical structure with two main phases: investigation (interacting with 

representations, applying math, and maneuvering) and integration of insight 

(maneuvering and expressing ideas).  

Two of their findings seem particularly relevant for the investigation of data 

visualization interactions: First, the category of maneuvering to denote “movement 

within and among programs” is part of both the investigation and integration of 

insight phases. As such, maneuvering can be considered an interaction type that can 

either be data-related or not, e.g., resizing a window is not connected to the underlying 

data being analyzed; subsequently, the authors name this part “navigation”. They 

name the second part “data management”, which is closer to our current 

understanding of traversing data, e.g., zooming in and out of maps or network 

visualization, providing overviews and then details on demand. Second, the presence 

of an integration of insights, with the categories maneuvering and expressing ideas, is 

an essential step where the subject describes their conclusions from the work 

previously performed during the other phases. This is especially of interest since this 

phase does not necessarily involve any interaction with the data at all but merely with 

non-data related parts of the application.    
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This basic distinction between interactions with data and interactions with the 

application is also mirrored in the taxonomy of interactive dynamics for visual analysis 

(103). The authors review a wide range of relevant literature as well as commercial and 

open-source data visualization tools and propose a taxonomy with 12 interaction types 

across three categories: data & view specification, view manipulation, and process & 

provenance. While it is not possible to align these two frameworks perfectly with each 

other, it is viable to view process & provenance (with the interaction types record, 

annotate, share, and guide) as an elaboration on the expressing ideas phase (188). 

Similarly, elements from the previously mentioned maneuvering category correspond 

to view manipulation (with the types select, navigate, coordinate, and organize). 

Neither view manipulation nor process & provenance, while containing interaction 

types, necessarily mean interactions with data. The authors do not elaborate on 

relationships and interdependencies between these 12 interaction types (see also Table 

4) but acknowledge that their list can serve to emphasize areas in need of further 

research.  

Ben Shneiderman’s much-cited mantra “overview first, zoom and filter, then details-

on-demand” (176) is often invoked as a basic rule when implementing data 

visualizations in general, and interactions with data visualizations in particular. The 

author identifies seven interaction techniques (overview, zoom, filter, details-on-

demand, relate, history, extract), see also Table 4. While we can see a significant 

overlap with work investigated here previously, Shneiderman does not make any 

distinctions between interaction types and tasks; instead, he refers to these 

techniques as tasks to be performed by the user rather than concrete techniques to be 

employed.  
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Also, along the line of linking interaction to user tasks and goals, Yi et al. (218) 

performed a literature review in 2007. While emphasizing the relative lack of research 

on interactions in data visualizations, they propose seven categories of interactions 

that “are organized around a user’s intent”, thus stepping away from focusing on low-

level interaction techniques (218), such as previously discussed here and outlined 

elsewhere (145). The authors review a set of sources with interaction taxonomies, 

some of which are also addressed in this literature review (11, 44, 56, 73, 117, 176, 

197, 212, 215, 220), then follow up with a survey of commercial tools before finally 

surveying papers in sub-disciplines of information visualization. Similar to what would 

be presented later (40), the authors found that different interactions can help a user 

achieve the same goals, and identified user intent as an emerging way of grouping 

interactions. Subsequently, they presented seven interaction types as shown in Table 

4. While their proposed interaction types can be aligned with others, some clearly 

show a different granularity; for example, arguably, “abstract/elaborate” is not 

necessarily the (widely agreed upon) “zoom”, but given the authors’ definition, zoom 

can clearly be seen as a kind of interaction to abstract (=zoom out) or elaborate (zoom 

in).  A similar focus on user intent (although with a less flexible pairing of intent and 

interaction) can be found in Buja, Cook and Swayne (44) who distinguish between the 

rather abstract-sounding finding Gestalt, posing queries, and making comparisons. 

Their limited number of high-level interaction techniques comprises focusing, linking, 

and arranging views, with a selection of operands for those actions to be performed on. 

These types present an extension of their previous work on focusing and linking as 

abstractions of the “diverse methodology” found in statistical graphics across multiple 

disciplines (such as, for instance, geographic information systems and time-series 



49 

 

analysis) at the time (45). Their assertion of rendering and manipulation as two root 

areas data visualization would be adopted as representation and interaction in 

subsequent literature (218). The authors also highlight the added benefit of real-time 

interaction with instant visual feedback, effectively adding time as a dimension to the 

data visualization. An interesting aspect of this paper is the focus on 3D visualizations 

and environments, likely due to their discussion of the XGobi tool and its 3D 

interaction capabilities in the same paper. While this paper went into greater detail on 

three specific interactions relevant for their “zoology” (p. 78) of interaction techniques, 

the authors largely ignore non-multivariate visualizations (thus the noted absence of 

histograms or line-graph visualizations). In contrast to this rather high-level approach 

to classifying interactions, Chuah and Roth (56) propose a framework where basic 

visualization interactions (BVIs) are combined to build potentially complex user 

inputs. A BVI consists of inputs (attribute, control object, value, formula, focus set), 

outputs (Graphical state data state, control state), and an operation where the input 

are set via the UI or by default (through the designer), although this distinction seems 

poorly worded since the UI, by necessity, was designed by someone before being 

accessed by the user for the sake of interacting with the visualization. The 

aforementioned operation consists of condition check and action, allowing for the 

chaining of multiple BVIs to achieve complex interactions. This idea of 

interdependencies between interactions is not unlike the how and what modules 

discussed previously in this review (40), although nothing like the why module is 

specified. While the interaction types discussed here cannot be fitted into our 

synthesized typology in Table 4, the authors’ focus on the semantic design of 
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interaction (as opposed to the lexical and syntactic parts) first identified earlier in the 

literature (91) provides a valuable input for this work.  

While the semantic design space applies to most of the literature reviewed here so far, 

the lexical and syntactic space is worth revisiting as well. Chuah and Roth (56) refer to 

lexical design (methods by which “input and output primitives are derived from basic 

hardware functions”) and syntactic design (“a set of rules by which primitive input or 

output units can be composed or joined to form ordered sequences of inputs and 

outputs”) to delineate spaces that operate on a hardware-oriented, more physical lower 

level, and build heavily on prior research on the semantics of input devices by 

Mackinlay, Card and Robertson (130), see Figure 8, and the classification of computer 

graphics subtasks (92). In light of the large variety of possible input devices that allow 

human-computer interaction, Mackinlay, Card and Robertson (130) identify the 

challenge to unify the “hodgepodge” (p. 147) of such devices into a coherent 

framework, onto which they then built later on (53). Some of the tools they list in their 

1990 paper certainly sound antiquated (headmice, Polhemus cubes) while others are 

still being pursed (gloves, body suits) for VR after their development was dormant for a 

few decades. The authors introduce a formalized language with notation reminiscent of 

object-oriented programming to describe a variety of n-dimensional input devices and 

mappings from input to output. Employing methodology from one of the authors’ prior 

work on creating application-independent visual encoding for data visualizations 

(129), the authors propose a framework to analyze expressiveness of user input, i.e., 

the correct translation of simple or composite user interactions with an input device 

into output towards an application. They define an input device with a 6-tuple of 

properties (similar to an object in object-oriented programming): manipulation 
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operator (physical property vector), input domain set (range of values), current state of 

the device, resolution function to map input set to output set, output domain set, and 

work function W that allows for resetting the input device if needed, e.g., a spring in a 

joystick that sets the joystick back to zero if unused. This general terminology allows 

for various combinations to describe very simple, e.g., the buttons on a radio, to quite 

complex, e.g., a VR controller with accelerometer, several buttons, and a touchpad.  

They further differentiate between three composition types: connection composition 

(where output from one device cascades into another device), layout composition (the 

device coordinates in physical space), merge composition (where the output from two 

input devices creates a higher-dimensional set).  
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Figure 8. Graphical representation of the design space of input devices (130). Lines with 
arrowheads indicate cascading input-out mappings. Also note the range of 
measurements at the bottom, from 1 to infinity. 

The authors then apply their framework to design a first-person walking experience in 

3D, specifying user input via their formal language presented above. With this having 

been written in the days prior to 3D gaming, they call it “3D egocentric motion” (p. 

173). Their stated goal is to facilitate consistency in interface design, empower users to 

adjust the interface if needed, and to contribute to the human-centered research in 

computer science and engineering. In other places, the authors present their 

framework of formalizing input devices and compositions thereof in a more concise 

manner and with an added focus on effectiveness, footprint, and bandwidth as other 

important considerations or “testing points” (p. 5) for successful human input to an 

application (52), ideas that were first expressed in Mackinlay’s earlier work (129). 

Backtracking further in time, the idea that an input device as “a transducer from the 

physical properties of the world into logical values of an application” (p. 3) was 

proposed by Buxton (49) earlier, although as part of a taxonomy for continuous input 

devices only.  

The idea that interaction types are built from utterances between fundamentally 

different agents (human and machine) is also explored in Robertson, Card and 

Mackinlay (160) where the authors apply their prior research on data visualization. 

They define two problems: First, the Multiple Agent Problem arises from the interplay 

of three elements: the user, the discourse machine, and the application. These need to 

collaborate in an asynchronous manner with a dialogue consisting of statements from 

human to the machine (via manipulations of input devices) and vice versa (via 

graphical, aural, or other displays), mounting a challenge for interface design. Second, 
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the need for fluent transitions and rendering constitute the Animation Problem, where 

the user needs to be able to follow various objects of interest on screen to understand 

state changes, which poses another challenge for interface design (the authors suggest 

a minimum framerate of 10 frames per second (fps), but give 30 fps as a desirable 

target). As a solution, they present the Cognitive Coprocessor, an abstract architecture 

where a central animation loop receives information from various other elements such 

as the Task Queue and the Display Queue to ultimately create advanced 

visualizations. In these visualizations, the user can enact change through interactive 

objects such as virtual doors, static and editable text, and even buttons or joysticks 

(virtual or physical), which ties back to research discussed earlier in this review (52, 

130). Interesting and relevant for our discussion of interactions in VR is their 

dedication to exploring user interaction in simple 3D environments. Nowadays 

ubiquitous terms such as gaze and body transformations are used throughout these 

papers. Even though these papers were written long before 3D interactions became a 

widely used and accessible feature, they contain descriptions of problems that do not 

cease to be of importance, with specific examples being framerate and delta-time 

correction, i.e., ensuring framerate-independent execution of the rendering pipeline. 

While the room metaphor implemented in the Information Visualizer did not carry on 

well commercially (177), this line of research on organizing virtual workspaces in three 

dimensions was carried out into the 1990s (104, 161) and continues to be of 

relevance.  

Squarely back in the area of exploring how interactivity can add value to static 

visualizations, Dix and Ellis (73) investigate a selection of tools available at the time, 

e.g., Ahlberg and Shneiderman (6), and propose a loosely organized framework of 
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interaction techniques that add value to established static visualizations (their 

examples included stacked bar graphs, line graphs, and pie charts). Their argument is 

that almost any visualization can be made interactive, in turn allowing visualization 

designers to “manage […] trade-offs [i.e., having to make a final decision on what 

variables to show in what visual encoding as one usually would when designing a 

static visualization] dynamically” (p. 131). In later work, the authors built on their 

investigation of interaction techniques by presenting methods to improve 

computational performance while zooming through statistical sampling (72). The 

interaction types they suggest can also be found in Table 4.  

The idea of interactive zooming (and varying level of detail based on zoom level) is also 

explored by Keim (117), along with other interaction techniques captured in Table 4.  

The idea that different types of visualizations enable users to solve different task, and 

that therefor interactivity can help designers make visualizations that support 

different tasks on user demand, can also be found in Tweedie (197). Or, as the author 

says:  

“Whilst this limitation [i.e., how visualizations are tied to supporting specific tasks] 
applies to static presentations, it is not relevant when interactivity allows different 
features of the data to be made salient [….]. [The] underlying representation becomes a 
medium through which different features of the data are made explicit. A single 
representation can now be used to answer many different questions.” (p. 375) 

The author examines fourteen visualization and types, isolating five interaction types 

as shown in Table 4. Furthermore, the author distinguishes between direct and 

indirect manipulation of the visualization and constructs a continuum from manual to 

automatic interaction whereby interaction becomes increasingly externalized. For 

example, clicking on a point in a scatter graph closely resembles the physical action of 



55 

 

putting a finger on an object. In contrast, clicking a button to run a selection 

algorithm is more external and similar to a black box. Concerned with the more direct 

end of this interaction spectrum, Chuah et al. (57) present work on selective dynamic 

manipulation (SDM) for a 3D visualization of food supply and demand in a crisis area. 

They identify five limitations to static data visualizations: maintaining scene context 

while focusing on individual objects, avoid or mitigate clutter and occlusion, maintain 

scaling across the scene without “dwarfing” (p. 61) objects representing small values, 

classify and save annotations to subsets of data, and mitigate height estimation 

difficulty between objects at varying distance from the user’s point of view (POV). While 

the domain application presented in this paper is a 3D visualization, all of these 

limitations apply to visualizations without spatial depth component as well. The 

authors address these issues by implementing a range of interaction techniques that 

allow the user to rearrange, rescale, and paint objects to facilitate height and location 

comparisons. The interaction techniques presented here are also included in Table 4.  

Similarly to how SDM allows the user to directly manipulate and select objects, 

Wilkinson (215) also distinguishes between direct and indirect manipulation tools. He 

considers direct manipulation tools “operate on the graphic itself” (p. 552), while 

indirect manipulation tools are outsourced into UI elements. While his assertion that 

indirect manipulation can offer advantages by using “a game-style GUI for users under 

the age of 16” (ibid.) may not be an appropriate observation given the vastly successful 

visualization packages making extensive use of UIs, distinguishing between interaction 

tools for various levels of expertise certainly rings true. In chapter 17 of his book, the 

author discusses three modes of control in data visualizations: learning and playing 

vs. exploring. Learning and playing are for the process of visual data analysis carried 
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out by analysts; exploring comes into play when end users gain insights from 

visualization software. While he makes no clear distinction between expert users and 

casual end users for these three modes, it becomes evident that interactions exist on a 

spectrum from low-level (data manipulation) to high-level (visualization manipulation).  

Of further notice for the discussion of direct and indirect manipulation is the 

framework presented by Ward and Yang (212). Aiming to present an overview of 

spaces in which interactions happen in data visualizations, the authors identify: 

operators, i.e., actions, specifically navigation, selection, and distortion; interaction 

spaces, i.e., screen-space, data value-spaces, data structure-space, attribute-space, 

object-space, and visualization structure-space; operands, i.e., the portion of the 

interaction space upon which interaction is imposed; and interaction parameters, i.e., 

properties of the interaction operator. They name five types: focus, extents, 

transformation, magnitude, and blender. The authors explicitly mention direct 

manipulation for focus selection, but do not include a formal definition for (in)direct 

manipulation or differ between the two in their framework. In later work, Ward, 

Grinstein and Keim (211) add on to this framework; specifically, they also include the 

interaction operators of reconfiguring, encoding, connection, and 

abstraction/elaboration. While these operators function as umbrella terms for more 

specific techniques, we still included them in Table 4 for alignment with techniques 

proposed by others.  

Another source of frameworks for interaction techniques can be found in papers that 

do not present a taxonomy per se but rather a list of recommendations for 

implementing tools for exploratory data analysis or visual analysis. Unwin (201) 
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reviews interaction functionality from software such as MANET, Data Desk, JMP, and 

Visual Insights, none of which are available in their original form anymore (as of the 

time of this writing, the web links given in the paper are either defunct or relay a 

visitor to other products). However, the interaction types the author extracts are still 

valid and can be aligned within our integrated overview of interactions in Table 4 just 

fine (they identify querying, zooming, variation of displays, multiple views, grouping, 

rescaling, and linking.). More recently, Heer and Shneiderman (103) set out to 

compose a taxonomy of interactive dynamics for visual analysis in order “to assist 

designers, researchers, professional analysts, procurement officers, educators, and 

students in evaluating and creating visual analysis tools” (p. 1). Their extended 

definition of the term of “analyst” hints at the wide variety of potential users of 

interactive data visualizations. Surveying a bigger set of software (the industry giant 

Tableau among them), they identify 12 distinct interaction techniques, grouped into 

three categories (data & view specification, view manipulation, and the oddly named 

but essential process & provenance). The latter category includes interaction types 

covered only by a small subset of the other works in this literature review, which is 

perhaps due to the increased focus on collaborative and communicative as well as 

exploratory data visualization. This trifecta of interactions is echoed in Börner (31) 

with data transformations, visualization transformations, and visual view 

transformations (although process & provenance are not covered in that particular 

framework). Both Börner (31) and Heer and Shneiderman (103) frequently reference 

existing commercial and non-commercial visualization tools when abstracting 

interaction types, a technique not without a large amount of precedent in the 

literature.  
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For example, Friedman and Stuetzle (94), in their review of mathematician John 

Tukey’s work on interactive graphics, refer to yet an older piece of software: PRIM-9 

from the 1970s.   

Because papers of this type make frequent references to existing software (and the 

technical challenges of the time), they date themselves more strongly. Interestingly, 

some technical challenges of the past, e.g., the comparatively low screen resolution of 

monitors in the 1990s, have long been resolved, but the base issue persists in other 

display devices, such as in VR.  

A much more recent implementation of interaction techniques, this time for large 

display walls, can be found in Agarwal, Srinivasan and Stasko (5). In their VisWall 

software, running on an 84” touch display, users of a spectrum of expertise can create 

and modify visualizations based on data attributes. While the interactions they define, 

such as add and merge, are specific to their tool, the navigate alternative 

visualizations interaction is more closely aligned with more generalized interaction 

techniques presented in Table 4. The authors attempt to implement (and specifically 

reference) the guidelines on fluid interaction for data visualization as outlined by 

Elmqvist et al. (81) who base their work on a review of best-practice implementation of 

interactions. Referencing literature from information visualization and human-

computer interaction (HCI), they investigate the concept of fluid interaction, defined as 

an interface that promotes flow, supports direct manipulation, and minimizes the 

gulfs of action, and review six best-practice visualizations. Further, the authors 

propose design goals (e.g., provide immediate feedback on user input, ensure user has 

correct mental model of application). These are echoed elsewhere in the literature, 
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explicitly so by Börner (31) who proposes three forms of user guidance in interactive 

data visualization: manipulation support, coordination support, and self-evaluation 

support (again ensuring the user’s correct mental model of the application).  

They finish by calling for visualization criticism as a “skilled practice” (p. 339) based 

on agreed-upon “visualization design patterns” (ibid.). They explicitly criticize some of 

the works also discussed in this review (11, 218) for their limited usefulness when it 

comes to generating and designing actual user experiences (rather than just 

describing existing ones).  

Further, the previously encountered notions of direct and indirect manipulation are 

discussed, with a call for more direct manipulation to increase interface fluidity (5, 57, 

215). The authors also make a case for equal treatment of representation (graphical 

representation) and manipulation (interaction) as brought forth previously by others 

(44, 218).  

In their best-practice review, the authors specifically mention the movie “Iron Man 2,” 

including a holographic visualization wall from the protagonist’s lab into their list of 

fluid information visualization exemplars. A whole book dedicated to this kind of 

review of interfaces from popular pieces of entertainment was written by Shedroff and 

Noessel (172). Although not a piece of peer-reviewed academic literature, their book 

contains numerous examples of futuristic designs for interaction, split across a variety 

of categories (e.g., mechanical and visual interfaces, gestures, and augmented reality).  

Other works, rather than providing a taxonomy for implementing interactions, provide 

either explicit support or assign a concrete role to interaction in the workflow of data 
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analysis. The D3 family of visualization packages notes the importance of interactivity 

for data visualizations across the three papers that introduced academia to their 

technology. Satyanarayan et al. (166), in their paper on Vega-Lite, note the difference 

between exploratory and explanatory data visualizations and the differing needs 

visualization software has to satisfy, depending on what kinds of visualization they 

want to support: while exploratory visualizations are often geared towards analysts 

aiming to get an initial impression of a dataset to uncover potential paths towards 

insights, explanatory visualizations are used to convey an insight to more general 

audiences (although, of course, exploratory visualizations are not exclusively made for 

experts). Prominent examples of such explanatory visualizations are those found in 

news media and text books. Satyanarayan et al. (166) argue that high-level languages 

such as ggplot2 and D3 are mostly geared towards explanatory data visualization, and 

thus develop a rationale for the development of their high-level Vega-Lite to facilitate 

more interactivity in data visualizations created with D3.  Finding this focus on 

interactivity specifically in a web-deployed visualization framework is not surprising; 

after all, modern web standards have a significant amount of native interactivity 

already built into them.  

In Making Data Visual, a visualization guide specifically for data analysts, Fisher & 

Meyer (89) do not address interactivity as an area of its own; rather they identify a 

number of analysis tasks and how they can be supported by multiple linked views 

(MLVs) , a concept previously explored by Roberts (159). MLVs enable the user to 

select a subset of data and then see multiple visualization types concurrently in in 

order to discover patterns, trends, and other insights by looking at the data from 
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different angles at the same time. While the act of selecting already constitutes an 

interaction in and of itself, it is not necessarily classified as an interaction type per se.  

In summary, various levels of granularity have been applied to categorizing interaction 

techniques in data visualization, from low-level, i.e., focusing on individual actions 

(145, 163), to high-level, i.e., focusing on goals and objectives of the user (103, 188, 

218). Any interaction model developed hereafter needs to account for this granularity 

and, subsequently, incorporate some kind of level structure to describe interaction 

types across different user needs. While interaction has not received the amount of 

attention in previous research that it needs to qualify as an adequately studied area of 

data visualization (81), the increasing use of high-resolution displays (plus the recent 

mass-market rise of VR), increased computing power, and heightened awareness of 

the importance of data literacy provide a fertile ground for the exploration of 

interaction types for data visualizations in VR.  

After presenting our synthesis of interaction types in the literature in section 2.2.2, we 

will investigate prior research on interface and interaction design for VR in section 2.3. 

2.2.2 An integrated overview of interaction taxonomies  

Our goal in this section is to present an interaction typology that is medium-agnostic 

and can be implemented in VR. Based on the literature review in section 2.2.1, we 

present a synthesized interaction typology for data visualization, see Table 4. 

Naturally, the terms across the columns do not necessarily line up 100%, and 

important semantic differences make the alignment of interaction types from so many 

papers challenging, but we think it is possible to explore common streams of thoughts 

in the literature. As evident in section 2.2.1, a large variety of frameworks for 



62 

 

interaction techniques in data visualization have been proposed. Some, like the 

taxonomy of distortion techniques by Leung and Apperley (128) and later revisited by 

others (56, 117), the widely cited Table Lens paper (157), or the FilmFinder (6), are 

limited to one specific technique and its implementation(s). Others, like the framework 

by Ward, Grinstein and Keim (211), introduce umbrella terms, grouping various 

techniques together. Yet others, like the semantic space of input devices proposed by 

Mackinlay, Card and Robertson (130), describe a more low-level, almost physical 

framework. We acknowledge the inherent challenge of aligning these terms but 

nonetheless believe that a visual representation as a table can provide valuable 

insights on what interaction types are most commonly considered in the literature. A 

table, itself a simple but strong visualization type, is a great way of highlighting 

similarities and differences across this multitude of sources. This summary of 

previously proposed taxonomies is in no way exhaustive but, to our knowledge, the 

most comprehensive one to date.  
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Table 4. A comprehensive overview of interaction types in data visualizations in six 
parts. New interaction types in the DVL-FW are marked in a darker blue. Column 
headers have last name(s) of author(s) and reference number.  
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2.3 Data visualizations in VR 

Modern VR hardware poses challenges: limited screen space and resolution (with a 

field-of-view around 110 degrees on the most expensive devices and only 2880 x 1600 

pixels); immature ergonomics of the head-mounted device (HMD); proneness to induce 

motion sickness at low frame rates. Additionally, some of its shortcomings have thus 

far prevented it from becoming a mass-market medium: the lack of choice for powerful 

standalone HMDs that do not need to be tethered to a powerful, expensive computer; 

the absence of a killer app that would prompt many customers to buy a VR system; 

the monetary investment. However, VR has been a subject of research for data 

visualization for a while. In 2016, two essential commercial VR setups were released: 

the Oculus Rift (by Oculus) and the HTC Vive (by phone company HTC and the 

software company Valve). Valve also owns the video game platform Steam, which offers 

access to a majority of commercial video games. The recent announcement of the 

Valve title “Half Life: Alyx” (203) has been met with great excitement and might become 

the killer app that prompts a new wave of VR purchases by end users (99). A 

comprehensive history of VR and how its various technological components were 

combined to eventually become the VR as we know it today, starting from the 

specification of linear rendering in the 1500s to the release of the HTC Vive in 2016, 

has been written by Sherman and Craig (173). 

In the previous section, we found that interactions in data visualization have not 

received the same amount of attention in the literature as visual encodings, user task 

types, etc. Now we investigate previous work on interactions in VR visualizations. 
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2.3.1 Interaction frameworks & embodiment 

Many definitions of VR exist; some focus on a reality-virtuality continuum (139), some 

on internal factors such as telepresence and experience (190), and yet others on the 

environments VR users get exposed to (38), and yet others on everyday life usage (132) 

and the whether there is “self-representation” of a physical body as a virtual one (181) 

(p. 131). We use the following operational definition of VR: 

VR is a medium where a user wears a head-mounted device (HMD) with one display per 
eye, controls a virtual camera through head movement. Optionally, two controllers with a 
variety of buttons, triggers, and a touchpad can be used to capture user input. VR 
enables the user to interact with virtual space and virtual object through natural input 
by virtue of tracking the position, rotation, and acceleration of their head and hands.  

This definition captures the immersive nature of VR, where the experience requires 

more physical user input than just the keyboard and mouse paradigm, and where the 

users “perform tasks relative to the body (egocentric)” (113), p. 202. While the 

technical specs and cost of VR hardware has changed substantially over the past 

decades, the operational definition given above holds true whether we discuss setups 

from the 1990s or the late 2010s. 

VR is never static; animation and movement are built-in. Even the most basic input in 

VR constitutes an interaction (73):  

“VR without interaction is simply computer graphics! Where visualisations do not 
support full 3D navigation […], the objects within that space must be interactively spun, 
moved or otherwise manipulated to reveal their nature.” (p. 126) 

Even the most basic and affordable VR gear offers head-tracking and, based on this, 

the use of the user’s gaze to select items and perform basic navigation. This allows VR 

developers to create experiences even when no controllers are available and if the 

user’s position in space cannot be tracked. Likewise one can argue that no 
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visualization is ever static, even if the interaction is not built in. Yi et al. (218), for 

example, observed that even static data visualizations can be interacted with by 

physically moving closer and looking at different parts of the visualization. VR thus 

requires interactivity by default. Even in the absence of any of the typical interaction 

techniques such as filtering or searching, the simplest possible VR experience needs a 

movable camera. VR is a medium where a virtual camera not only simulates a first-

person view but also allows for a more intuitive interactions through tracking of body 

parts. While there are hardware and software solutions to provide a more immersive 

experience with a 2D screen (such as eye tracking support in some video games), the 

experience of six degrees of freedom (6-DoF, see also Glossary) means not only more 

perceived liberty of movement but also creates more dimensions for user interaction. 

VR thus presents a departure from what is commonly called the “window, icon, menu, 

pointing device" (WIMP) interaction style popularized in the 1970s and could be part of 

a larger paradigm shift towards a new generation of interfaces. A well-written, very 

brief history of the WIMP interface metaphor was written by Van Dam (206). To 

capture a variety of interfaces substantially different from the common desktop 

metaphor, Jacob et al. (113) propose the framework of reality-based interaction (RBI):  

“We believe that all of these new interaction styles draw strength by building on users’ 
pre-existing knowledge of the everyday [world]. They employ themes of reality such as 
users’ understanding of naïve physics, their own bodies, the surrounding environment, 
and other people.” (p. 201) 

The authors describe how RBI themes such as naïve physics, body awareness and 

skills, environmental awareness and skills, as well as social awareness and skills can 

be leveraged by interaction designers, and present four case studies highlighting the 
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concept of RBI as a tool to evaluate existing designs, e.g., two experiments on walking 

in VR (182, 202), also discussed in section 2.3.3 of this dissertation.  

Essential is the awareness of tradeoffs between these RBI themes and the desired 

qualities of the implemented systems, e.g., expressive power, efficiency, and 

practicality. RBIs can be analyzed and evaluated using this notion of tradeoff, 

although the authors admit that their framework does not include a methodology to do 

so. We will review previous work on VR user study methodology in section 2.4. While 

Jacob et al. (113) propose an overarching framework to understand post-WIMP user 

interaction as a whole with a focus on diverse physical and cognitive abilities of 

humans, others have focused on individual interaction styles. For example, Coutrix 

and Nigay (63) present their Mixed Interaction model, aiming to unify existing research 

on mixed reality systems while focusing on input modalities consisting of a device d 

and a language l. Subsequently, they investigate the model’s descriptive, generative, 

and comparative power, and implement it in a mixed reality video game. The Mixed 

Interaction model extends the Instrumental Interaction model presented several years 

earlier by Beaudouin-Lafon (25), where a set of rules to guide the development of post-

WIMP interfaces is discussed and implemented in a text search engine. 

Aside from the affordances of (post-)WIMP interfaces, another important concept in 

understanding interaction for VR is embodiment, and embodiment-inspired 

interaction frameworks (90). Klemmer, Hartmann and Takayama (120) present five 

themes on interaction design and how we can leverage a user’s body for better 

interface design: thinking through doing (emphasizing the possibility to offload 

cognition to physical action), performance (the high throughput achievable with 
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physical input, e.g., our hands), as well as visibility, risk, and thickness of practice. 

The authors note that GUIs unify practices across multiple activities, e.g., practices 

that are very different in real life become unified when using a WIMP interface, such as 

making music, writing text, and editing photos. Further, they emphasize the versatility 

of the human hand as an input device with its expressive (gesture), sensing (touch), 

and operational (grasping, swiping, etc.) capabilities. For example, Buxton and Myers 

(51) ran two experiments on two-handed input and parallel task completion and, 

among other things, found that using two hands for positioning, scaling, and selection 

tasks can significantly decrease completion time. Buxton (50) further elaborates that 

interfaces (at the time) were designed with a visual primacy, largely ignoring other 

sensory systems such as the ear, and not making adequate use of human dexterity. 

Abstracting from the findings in his experiments, he later generalized his views about 

how visible and tangible interfaces make use of physical human properties (such as 

motor skills) to how these interfaces reflect cognitive and social properties (48). In a 

literature review published more recently, Lee et al. (124) propose four design 

dimensions (individual, technology, social interactions, interspace between person and 

technology) to categorize non-WIMP and natural user interfaces (NUIs). They suggest 

improving interactions in data visualization by going “beyond mouse and keyboard”, 

providing “high freedom of expression”, paying attention to “social aspects” of 

technology use, reducing “the gap between person and technology”, and strive to 

understand “people’s behavior” better (p. 2697). Witmer and Singer (217) also note 

that natural interaction with a virtual environment can increase immersion in that 

environment. 
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In this section, we investigated a select number of works on interaction frameworks 

and embodied interaction beyond the WIMP interface paradigm. Since one of the key 

properties of VR is input via head and hand rotation (and movement, depending on the 

setup), we consider this line of research essential in discovering and understanding 

previous attempts at formalizing and testing the usefulness of new interfaces and the 

input devices they need as well as affordances they bring.  

2.3.2 Immersive Analytics  

In this section, we focus on a more recent line of research that heavily involves VR. 

Immersive Analytics (19, 55, 60, 79, 134, 179) is an evolving practice where reality-

extending technologies, i.e., VR, augmented reality (AR), or mixed reality (MR), 

collectively known as XR, are used to visualize and investigate abstract data using 6-

DoF VR controllers in a virtual environment, or what Bowman et al. (38) called 

“information-rich environments” where the virtual objects are representations of non-

physical entities. This is in contrast to many scientific visualization applications where 

the data is inherently spatial, and thus presents a natural use case for human depth 

perception and 3D user input. Use cases include assessing risk in mining with seismic 

data (116), protein-docking (13), astronomy (74, 75), computer-aided design (183), 

geographical information science (106), and health care (110). Bryson (42) made the 

case for using VR for scientific visualizations by pointing at the affordances VR offers 

for interaction with complex phenomena and their representations in data: “We want 

to create the effect of interacting with things, not with pictures of things” (p. 63).  

 



75 

 

Chandler et al. (55) propose Immersive Analytics as “a new facet of data analytics 

research that seeks to unify these efforts [i.e., leveraging emerging interface and 

display techniques such as VR and AR for data analysis] to identify the most enabling 

aspects of these emerging natural user interface and augmented reality technologies 

for real-world analysis of data” (p. 2). A comprehensive coverage of this emerging 

research field was written by Marriott et al. (134), with articles on multisensory input 

(136), interaction (47), collaboration (29) alongside a wide selection of case studies for 

the application of Immersive Analytics to solve real-world problems (70).  

In terms of implementations of Immersive Analytics, Simpson et al. (179) present a 

prototype to analyze the output of a Dynamic Integrated Climate-Economy (DICE) 

model for environmental decision-making. Hurter et al. (107) present FiberClay, a 

system to visualize 3D trajectories in VR. Batch et al. (23) present a field study using 

economic data with multiple phases of refinement (design stage, in-the-wild 

deployment, and summative) with data-domain expert users. While there are many 

hypotheses and findings in this study, two noteworthy ones are: when presenting their 

own visualizations to an external observer, the participants rearranged their 

visualizations into chronological order, and would also build more complex 

visualizations then. Additionally, users reported high engagement while voicing 

concerns about the usefulness of a heavy VR setup for everyday data analysis as an 

economist (or any data analyst for that matter). We investigate VR user study 

methodology more deeply in section 2.4.  

Batch et al. (23) built their VR analysis environment using ImAxes (61), a framework 

for authoring visualizations for abstract data in VR, allowing the user to build 2D and 
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3D scatterplots, multiple linked visualizations, and parallel coordinate plots. ImAxes 

was built using Unity. Implementing the direct manipulation paradigm (175) in VR, 

ImAxes is centered around data axes as “embodied affordances” (p. 71) where the 

location and orientation of these 3D data axes can be used to create a variety of 2D 

and 3D visualizations in virtual space. This makes ImAxes fluidly interactive (81), 

using a formal grammar to allow the user to construct visualizations by manipulating 

data axes alone, without menus. Similarly, the Immersive Analytics Toolkit (IATK) 

developed by Cordeil et al. (60), likewise built with fluid interaction (81) in VR in mind, 

implements four design goals: expressiveness, simple authoring, scalability, and 

integration of MR (support of augmenting a user’s desktop with virtual space). It 

comes with a high-level GUI as well as a low-level API for finer control over the created 

visualizations, and allows for a variety of interaction techniques such as filtering, 

brushing and linking, and details-on-demand, with animated transitions and 

animations. While ImAxes (61) was developed for end users in VR, IATK is a package 

for designers using Unity, and is thus built to make use of Unity’s GUI and 

programming environment.  

Immersive Analytics is at the forefront of data visualizations for VR, and the 

implementations outlined in this section use very similar setups to the ones developed 

later in this dissertation (chapters 6 and 7). Investigating this string of previous work 

highlights the affordances and limitations to VR for data visualization, and gives a firm 

understanding of the advantages and disadvantages of modern hardware and software 

solutions available to us (namely, Unity and commercially available VR gaming 

headsets).  
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2.3.3 User interface design in VR 

In section 2.3.1, we investigated the WIMP interaction paradigm where windows, 

icons, menus, and pointers are the primary tools for a user when interacting with an 

application. WIMP is optimized for 2D screens. In 1993, Robertson, Card and 

Mackinlay (161) argued that technological advancement (especially speed vs cost) and 

application demand drive UI innovation. They voice their disappointment with the 

prevalence of the WIMP interface paradigm, established for decades at this point and 

famously captured in essence, for the first time, in Douglas Engelbart’s famous Mother 

of All Demos almost 30 years before (78), see Figure 9.  

 

Figure 9. A: Douglas Engelbart during the Mother of All Demos. B: Prototype of the first 
computer mouse. C: The keyboard and mouse setup used by Engelbart during the 
Mother of All Demos. 

The authors present four methods to leverage recent advances in computer graphics in 

order to cheapen the cost of information retrieval: larger workspace, agents, real-time 

interaction, and visual abstractions. Going back to their previously discussed work on 

the Information and the 3D Exploratory (104, 160), they formulate solutions to 

ongoing challenges of optimizing information management and retrieval through the 

use of advanced computer graphics, and argue “that information access will be a 
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primary force in shaping the successor to the desktop metaphor” (p. 57). The authors’ 

call for the research and development of new post-WIMP UIs has since come to 

fruition. There is a variety of research on tangible (20, 105, 108), non-command (149), 

and the previously discussed reality-based interfaces (113). Some VR applications do 

not use WIMP elements at all and implement direct manipulation instead (61). Direct 

manipulation has been described as providing direct engagement between user and 

system as well as low “semantic distance” between input and output vocabularies 

(109). The authors then famously introduce the concept of golf of execution and the 

gulf of evaluation, where both can be “bridged” (p. 318) via good usability to “minimize 

cognitive effort” (ibid.).  

More recently, authors have been investigating post-WIMP interfaces in areas of 

entertainment such as video games, TV shows, and movies. Shneiderman (177) 

cautions against merely copying the “richness of 3D reality” (p. 12) and warns of the 

challenges this could introduce into the interface, i.e., occlusion, complex user action, 

and confusing navigation. He suggests restraining a user’s action instead and calls for 

making 3D interfaces “better than reality” (ibid.) by proposing a set of guidelines for 

designers of 3D interfaces. Investigating a range of 3D applications relevant at the 

time (such as There.com and ActiveWorlds), he gathers 22 suggestions for developing 

user-friendly 3D interfaces. In their brilliant survey of interface design in science-

fiction movies and TV shows, Shedroff and Noessel (172) dedicate a whole chapter to 

visual interfaces. After investigating the choice of typeface, color, display shape, and 

visual effects like glow and transparency, in several pieces of entertainment, they 

discuss 3D file system and the advantages and disadvantages associated with them. 

Pointing at humans’ good spatial memory, they caution again over-challenging less 
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“spatially adept” users who “frequently lose their keys” (p. 62). The intention behind 

this work is to provide guidance to interface designers by helping them understand 

how interfaces are made to look futuristic yet realistic. Similarly, to bridge the gap 

between VR designers and those who implement their designs, Tanriverdi and Jacob 

(193) propose the Virtual Reality Interface Design (VRID) model and methodology 

comprised of five components (graphics, behavior, interaction, mediator, 

communication). In a high-level design phase the graphics, behaviors, etc. of objects 

are determined, which is then followed by a low-level design phase for implementation 

details whose output then guides the development of a VR interface in software. 

Sherman and Craig (173) devote four full chapters to interfaces and interactions in 

VR. We further review VR UIs in video games and a selection of commercial 

applications in section 2.5.  

Two challenges when implementing traditional WIMP interfaces in VR are the low 

resolution and the added depth of a 3D pointer. Even state-of-the-art VR headsets can 

only display a comparatively small number of pixels, making it hard to, e.g., make 

small text legible and display icons in a satisfying quality. In the Supporting 

Information (section Modern VR hardware), we provide an overview of a select few 

HMDs with pertinent technical specs. In terms of added depth, the challenge of 

adapting a 2D button for a 3D environment is often solved with the usage of 

visualizing a ray into the scene coming out from the VR controller, which can then be 

used to hover over and click a button or use a slider, see Figure 11. However, this 

added depth when using a WIMP interface in VR can make it awkward to use the 

interface at all, especially when parts of the UI become occluded or if the user has 

trouble aiming correctly. Also, since 2D buttons in VR have a flat shape, there is a 



80 

 

considerable angle from where the effective size of the buttons is very small for the 

user to hit; on a 2D interface, buttons always face the user at a rotational difference of 

0 degrees. In VR, if the orientation of the button is fixed, then, when the user moves 

through the virtual space, the button can become almost invisible from certain angles. 

Many 3D video games solve this problem by making the UI part of the virtual 

environment as object-fixed UI. Many VR applications have buttons as part of a 

controller menu, allowing the user to determine the orientation of the button with 

their own hands, see Figure 10. While this approach allows developers and designers 

to leverage our learned abilities to use classic WIMP interfaces, it can still pose 

challenges, especially to novice users.  

 

Figure 10. An object-fixed, contextual UI panel, linked to a VR controller (left). 

Additionally, while implementing a mouse click on a button in 2D environments is a 

standard functionality available in most SDKs and platforms, such as browser-

deployed visualizations (27, 37), building a VR pointer, on the other hand, as of the 

time of this writing, comes with a significant amount of coding and is thus not easily 
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accessible. It has therefore been explicitly recommended to avoid using 2D UI 

elements in VR but to enable the user to use VR controller input instead (107). We will 

review interactions and UIs in exemplars from video games and commercial 

applications in section 2.5.  

 

Figure 11. Basic VR pointer in Unity. 

2.4 VR user study methodology 

In this section, we investigate prior work on designing and performing user studies for 

interaction design and for VR. We are also interested in reviewing individual data 

collection tools. Table 5 provides a summary of user study setups by several 

dimensions. The goal of this section is to understand sample sizes, conditions, 

hardware and software used, what telemetry data was captured (if applicable), and 

research designs employed to lay the groundwork for chapters 5 to 7. While a full 

review of VR user study methodology is out of scope for this dissertation, we 
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investigate a few select implementations to set the stage for the experiments run in 

this dissertation. 
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Table 5. Selected user study setups for VR. 
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2.4.1 Measuring presence  

An essential element of experiencing VR is presence. Steuer (190) defines presence as 

“the sense of being in an environment” (p. 77), further proposing the term telepresence 

as “the experience of presence in an environment by means of a communication 

medium” (ibid.). This is opposed to the concept of VR as an ensemble of hardware 

devices such as HMDs and bespoke input devices. A continuous stream of sensory 

input needs to be supplied to the user, either as “patterned sensory impressions” (181) 

(p. 131) or “[coherent] stimulus flow” (217) (p. 226). 

Measuring presence has been an essential task in collecting data from user studies 

and is usually measured via self-report. Witmer and Singer (217), for example, propose 

two questionnaires on presence (PQ) and immersive tendencies (ITQ) to quantify 

experience of presence and the experience of involvement (high level of attention and 

focus) and immersion (exclusion of the physical world as a result of a constant flow of 

stimuli from a virtual environment), respectively, using a 7-point scale. The authors 

discuss involvement and immersion as prerequisites for presence, where immersion is 

based on the experience of a person rather than a descriptor of a specific VR 

technology as proposed by Slater et al. (180), discussed later in this section. They 

further synthesize four factors from previous work that influence involvement and/or 

immersion and, thus, presence: control, sensory, distraction, and realism factors. 

They corroborate these factors over four user studies with the PQ and the ITQ, finding 

significant correlations between a majority of factors with the total PQ and ITQ scores. 

They argue that while no conclusive evidence has been produced yet, increasing 

presence can lead to increased learning and performance.   
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The concept that presence follows immersion is also shared by Slater, Usoh and Steed 

(181). The authors present a user study with 24 participants across four conditions to 

test how the experience of presence, or “’being there’” (p. 131), is related to “stacking 

environments” (p. 133). Interested in exploring the importance of transitions between 

environments, they develop a model to quantify presence as a result of being n steps 

removed from physical reality. In an experiment with 24 subjects, gravity, the 

presence of virtual physical danger, virtual actors, and the number of stacked 

environments (or levels) were treated as independent variables to observe presence.  To 

minimize contact between the subject and the researcher, a fairy tale-style plotline 

was presented where participants had to perform certain tasks in the virtual 

environment. Half of the subjects went from level to level by putting on a virtual HMD 

while in VR while the other half did so by going through a virtual door. A pre-

questionnaire asked about visual, aural, or kinesthetic primacy and perceptual 

position of the user to determine their proneness to certain senses. A post-

questionnaire assessed the participant’s experience of presence. The study finds that 

presence correlates positively with visual and kinesthetic primacy, and negatively with 

aural. Furthermore, a positive correlation was observed between presence and 

transitions via virtual HMD, and a negative one between presence and going through 

doors. The authors emphasize the shortcomings of assessing presence via self-report.   

Interplay between presence and other factors for VR have also been studied. Seay et 

al. (170) use the previously discussed ITQ (217) as well as a Simulator Sickness 

Questionnaire (SSQ), both administered pre-treatment, together with the 

aforementioned PQ (217) and the second part of the SSQ post-treatment in their study 

of simulator sickness (measured as nausea, oculomotor stress, and disorientation) 
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with 156 undergraduate student subjects. There were four experimental groups (field 

of view, or FOV at one screen vs. three screens, stereo- vs. monoscopic display) with 

pairs of participants being assigned either a driver or passenger role in a flight-

simulator. The authors find no correlation between the scores on the ITQ, PQ, and 

SSQ, no difference between the cohorts. However, they do find that a higher FOV or 

being the driver increased the PQ score.  Users with high FOV reported higher levels of 

nausea. The authors argue that motion without interaction from passenger added to 

the feeling of nausea, along with the rapidness of the content in the peripheral vision 

when using FOV displays.  The authors thus consider a large FOV a “double-edged 

sword” (p. 300), and that the feeling of presence and experiencing sickness are not 

mutually exclusive as one might expect.  

2.4.2 Measuring task performance  

In later work, and building on research by Mizell et al. (141) on evaluating VR vs. 

desktop workstations, Slater et al. (180) studied how immersion influences 

performance in a user study with 24 participants in four cohorts where the subjects 

have to recreate the moves seen on a virtual 3D chess board on a physical one. 

Specifically, they wanted to test differences between VR and 2D screens for 

understanding geometric structure, knowledge transfer, and how immersion 

influences performance. Subjects with prior experience in VR were evenly distributed 

among cohorts. After a pre-questionnaire about demographics and prior exposure to 

VR and video games, subjects listened to an introduction to the 3D chess board, a VR 

practice session in a virtual kitchen introduced the subjects to navigating and 

interaction in VR. In the following reproduction task, the participants first observed a 

virtual chess game, then had to recreate those moves before filling out a post-
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questionnaire about confidence about performance, nausea, and presence. The 

authors find that the level of immersion (in this case, the egocentric condition) and 

environment (in this case, realistic) had a significant influence on performance.  

Immersion (in this case, egocentric) was also significant for the sense of self-reported 

presence, but environment was not. The authors close by recommending further 

research into the spectrum of immersion that can achieved from combining different 

display media with different rendering settings to produce experiences across the 

spectrum between the “two extremes” (p. 171)  they chose for immersive settings.  

A useful way to measure task performance is telemetry, i.e., extracting position, 

rotation, and gaze data from an experimental VR setup. More recently, Cordeil et al. 

(62) compared the first generation of mass-market HMDs and CAVE2  systems (86) 

with regards to functionality, collaboration, and user experience for analyzing abstract 

data (connectivity of 3D networks). In a user study involving 34 participants in groups 

of two, divided into two cohorts (HMD and CAVE2), users had to perform two tasks in 

tandem (finding the shortest path between nodes and counting triangles), reporting 

their answers as a team. The authors measured task completion time, accuracy, and 

user experience (via a post-questionnaire), and find that users in the HMD condition 

needed significantly less time for their tasks without differences in accuracy. Also, 

they did not find shared focus strategies to have an impact on task accuracy but on 

completion time for the pathfinding tasks in both conditions. Further, using the HMD 

was reported to be more impersonal than face-to-face communication compared to the 

CAVE2. Furthermore, subjects in the CAVE2 condition whose head movements did 

not control the virtual camera were found to perform significantly less head 

movements than their partners. Assigning subtasks was more unclear in the HMD 
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condition. In terms of usability, the study did not find any significant differences 

between the two conditions.   

Kwon et al. (122) performed a user study comparing layout, rendering, and interaction 

with graphs in 2D and VR. They implemented a cursor paradigm where the cursor is 

controlled via mouse in the spherical graph layout and can be reset via a hotkey in 

three conditions: 2D layout, spherical layout without depth routing (i.e., edge bundles 

that are farther away appear darker), spherical layout with depth routing. In a user 

study with 21 participants, they measure completion time, accuracy, and the number 

of interactions (pointing, highlighting, selecting) for the four tasks (find common 

neighbors, highest degree, path, recall node locations) on four graphs (training, small, 

medium, large) in the study. The authors find that users in the spherical layout 

condition with depth routing performed significantly faster than those in the other 

conditions while using a significantly smaller number of interactions. While the choice 

to display a 2D graph in an HMD rather than on a 2D screen might be considered 

unfair handicapping of the users in that condition, the study highlights and quantifies 

the effect of different layouts and rendering on completion time, accuracy, and 

interactions needed to perform tasks in VR. In a post-questionnaire, the users 

expressed their preference and the perceived ease-of-use of the spherical layout with 

depth rendering of the other two conditions. Worth noting is the fact that this 

experiment was not implemented in Unity but in Unreal Engine, a software with 

advanced graphics capabilities with less work needed on the side of the developers 

that has traditionally been very popular for video game development.  

Prabhat et al. (154) evaluate subjective preference and quantitative performance for 

biological data analysis for three display metaphors: Desktop, Fishtank, and CAVE. In 
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a user study with 12 participants where every participant performed the tasks on all 

three platforms (with variations of the order in which the platforms were used), the 

authors find that the CAVE system significantly outperformed the other platforms with 

regards to performance score. Methodologically, two factors make this user study 

distinct from the others reviewed in this section: the extended length of this 

experiment, which is marked as two to three hours as per the study information sheet 

(probably due to the fact that each subject used all three platforms), and the high 

involvement of the experimenter, prompting subjects to perform tasks in as much 

detail as possible through repeated questioning. In a similar setup but with only two 

conditions (2D and VR), Millais, Jones and Kelly (140) compared user performance for 

visual data exploration in 2D and VR while measuring user satisfaction via 

questionnaires. They implemented a scatter graph as well as a parallel coordinate plot 

in 2D (using d3.js) and VR (using Unity), deploying them to a laptop and a Google 

Daydream VR HMD, respectively. The study finds that participants in VR reported 

feeling more successful as well as satisfied with their work than 2D users while 

reporting – somewhat expectedly – higher physical demand. Additionally, VR 

participants submitted fewer insights coded as incorrect.  

2.4.3 Telemetry & remote data collection  

While presence (2.4.1) and task performance (2.4.2) can be measured via qualitative 

methods such as observations and questionnaires, metrics like movement are easier to 

track with telemetry, i.e., the automated logging of quantitative data such as position, 

rotation, and interaction. Modern SDKs such as SteamVR and Oculus SDK, together 

with the scripting capabilities of Unity and Unreal Engine, allow research designers to 

create sophisticated logging functionality for their user studies. Work discussed here 
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previously (23, 62, 122) has made extensive use of this feature. The previously 

discussed work by Batch et al. (23) also uses telemetry in combination with 

observation and interviews to measure task performance for VR setups. The authors of 

this study used the HTC Vive in conjunction with Unity, the same setup in this 

dissertation. Comparing the experimental setups of Cordeil et al. (62)  and Batch et al. 

(23), it becomes clear that the authors of the more latter paper were able to construct 

more natural user interactions by virtue of the Vive controllers shipped with the HTC 

Vive system, while the setup in the former was a self-built one (using a Leap Motion 

hand tracker strapped to the user’s head). As more advanced input devices become 

available at a better price, the ability of researchers to collect more data also changes. 

Similarly, Pfeuffer et al. (152) conducted a user study to identify users from body 

movements from four basic tasks in VR (pointing, grabbing, walking, typing). The 

authors collected biometrics data from 22 participants logging position, rotation, 

velocity, and angular velocity of both controllers and the HMD as well as collision 

information about the rays emitted from these devices. They find that head motions as 

well as the distance between the HMD and the VR controllers are the most reliable 

feature to identify a user. Similarly occupied with assessing body movements, Cikajlo 

and Potisk (58) performed a user study with 22 patients with Parkinson’s disease a 

cube-placing task, they compare two cohorts (Desktop vs. VR), where subjects in the 

Desktop condition placed cubes while looking at a 2D screen while VR users did so 

while wearing an Oculus HMD. The hand motions for all users were captured with a 

Leap Motion controller. The study finds that participants in the VR group showed 

significantly faster performance, placed more cubes, and exhibited healthier tremor 

indicators while also registering higher motivation and interest from the VR cohort.  
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Experiments previously discussed in this review utilized telemetry setups in Unity or 

Unreal Engine (23, 62, 122), but all of these studies were (for the most part) conducted 

in lab environments. While there is an ample amount of user studies with 1000+ 

subjects for data visualization using remote data collection via the World Wide Web 

(101, 119) or in longitudinal studies (178),  similar setups for VR are barely 

researched, presumably due to the lack of standards and the prohibitive cost of 

advanced VR equipment as well as the low capabilities of cheap VR. Similarly, “in the 

wild” user studies (162) for VR are few and far between. As an example, the previously 

discussed Immersive Analytics user study by Batch et al. (23) deployed a VR setup 

running their application in a federal agency for a short duration of time without a 

researcher present before continuing towards a more controlled data collection 

environment. Steed et al. (189) performed a user study with 59 participants via an 

Android app for Samsung Gear VR and Google Cardboard, two VR devices at the 

cheaper end of the cost spectrum of modern VR. Because of the low-spec hardware, 

and for reasons of physical safety when collecting data “in the wild”, this study was 

limited to comparatively simple tasks (watching a virtual singer perform in a virtual 

bar while sitting). Another issue raised by the authors is the problem of ethics and 

consent when collecting data from participants using their application. The authors 

estimate that the app was installed a total of 400 times, and after filtering, there were 

59 datasets usable for data analysis. The study finds that being asked to tap along in 

the virtual experience lowered the user’s self-reported presence score (presumably 

because the avatar then started tapping their foot without user input). Further, seeing 

one’s own avatar increased a sense of fear of being hurt from a falling object inside the 

experience. Whether the virtual singer looked at the user made no significant impact 
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on presence. Telemetry data (head rotation only) was recorded but not used for data 

analysis.  The authors close with remarking that developing an “in the wild” research 

design requires more effort than a lab research design due to the need to optimize for 

cheap user hardware and the infrastructure needed to collect telemetry data remotely. 

In a similar study but with an additional in-lab condition, Mottelson and Hornbæk 

(144) compared effect sizes between in-lab (n = 31, using an HTC Vive) and out-of-lab 

(n = 57, using Google Cardboards on smartphones) cohorts. Specifically, they designed 

three VR tasks and experiences (pointing, 3D tracing, body ownership illusion) and 

measured differences in effect sizes between the cohorts. The study finds that while 

completion times, accuracy, and throughput for the pointing task were significantly 

different for the in-lab subjects, users in both cohorts were able to perform the tasks 

without an experimenter, and that effect sizes between sub-conditions in the 3D 

tracing and body ownership illusion experiences were similar for both conditions. The 

authors see this as proof that out-of-lab, crowdsourced VR user studies are feasible.  

2.5 VR interaction and UI exemplars from video games  

2.5.1 Interactions  

All VR visualizations (and most printed maps) are, by default, interactive. At the very 

least, a VR visualization allows the user to move their head, controlling a virtual 

camera. What Yi et al. (218) as well as Spence (186) call “passive interaction” for static 

visualizations (such as looking at it from different distances) becomes rather active 

interaction in VR. Even a simple change of gaze leads to adjustments on the backend 

of the visualization. A rich ground for innovation in user interaction is the world of 

entertainment. Since the early 1990s, 3D video games have provided a financial and 
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creative incentive for companies to develop user interactions and UIs that seamlessly 

support gaming experiences. Many VR user studies reviewed in section 2.4 asked 

questions about the gaming experience of their subjects as gaming is likely to be the 

most prevalent activity involving 3D most users have encountered. The previously 

discussed prevalence of the WIMP paradigm since the 1980s led to a certain 

uniformity in UIs in video games as video game developers copied what worked well so 

as to avoid the high cost of changing interaction paradigms (24), and as UI frameworks 

in video game engines became standardized as well. To that effect, most UI elements 

have not changed significantly since the early days of 3D gaming. Of course, VR games 

present a significant challenge to this WIMP paradigm. The limited screen resolution 

and complete enclosure of the visual field prohibits the player from engaging in user 

interfaces traditionally designed for keyboard and mouse or controller. Similarly, 

within non-VR games, there is a breadth of implementations for user interactions with 

the two most prevalent forms of user input being mouse/keyboard, and controllers. 

Video game genres like first-person shooter (FPS) can be played with both types of 

input devices, while strategy games usually require a mouse and keyboard to be 

played in a satisfying manner.  

2.5.2 UI design dimensions  

UIs in video games can be categorized along several dimensions: fixture, association, 

level of aggregation, manipulation directness, persistence, and visual encoding. UI can 

be screen-fixed, world-fixed, object-fixed, or user-fixed (degree of fixture), spatially or 

visually explicit (association), minimal, distributed, or complex (level of aggregation), 

susceptible to direct manipulation or indirect manipulation (degree of directness), 

displayed continuously or just contextually (degree of persistence), and can include 
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linguistic, pictorial, and geometrical symbols (degree of visual encoding). This 

distinction builds on the design space for information display in Information-Rich 

Virtual Environments by Bowman et al. (38), who considers display location, (fixture 

in Table 6), association (spatially explicit, visually implicit/explicit), and level of 

aggregation (how much information to visualize in one display). We extend this triple 

of design dimensions by three more: manipulation directness (how the player interacts 

with the display, if at all), persistence (how long it is visible), and visual encoding 

(what graphic symbols are used to construct the display). With these six dimensions in 

mind, we can (de-)construct a majority of UI elements in 3D applications.  
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Table 6. Design dimensions for UI in 3D environments. 

 Fixtur
e 

Associatio
n 

Level of 
aggregatio

n 

Manipulatio
n 

directness 

Persisten
ce 

Visual 
encoding 

Element
s are 

Screen
-fixed 

Spatially 
explicit 

Minimal 
number of 

variables 
per display 

None (static) Rarely 
visible 

Geometri
c, 

linguistic
, pictorial 

World-

fixed 

Visually 

implicit 

Various 

combinatio
ns on 
various 
displays 

Indirect 

(player 
interacts 
with system) 

Sometimes 

visible 

Object
-fixed 

One 
complex 
display with 
all variables 

Direct 
(player 
interacts 
with UI 
element) 

Always 
visible 

User-

fixed 
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Degree of fixture 

Most commonly in 3D applications, important UI elements are attached to a location 

on the x-y plane of the 2D screen, which is referred to as screen-fixed UI. This type of 

UI has traditionally been used for the persistent display of essential stats about the 

player’s health, supplies, and other pertinent data. Figure 12 shows screenshots from 

Doom (111) and the Outer Worlds (83), released 26 years apart, but both using this 

same UI modality. Of course, screen-fixed UI is the standard for almost all WIMP 

interfaces, and thus for most desktop software employed in today’s world, whether in 

Microsoft Word, Adobe Photoshop, or Tableau.   
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Figure 12. A: Doom, a 1993 game, with its screen-fixed UI at the bottom, displaying data 
about the player’s remaining supplies and health. Note the use of a Chernov-style face 
to convey additional information about the current health status. B: The Outer Worlds, a 
2019 game, still using screen-fixed UI for persistent display of health, supplies, other 
players, etc.  

Screen-fixed UI is not limited to being 2D. Outer Wilds (142) presents a variety of 

supply and navigation-related data for three dimensions, see Figure 13.  

 

Figure 13. Supply and navigational information in Outer Wilds, a 2019 game.  

In VR, however, there is usually no fixed screen space to attach those UI elements to; 

as a consequence, such content needs to be either world-fixed, object-fixed, or user-

fixed. World-fixed UI elements are tethered to a set point within the 3D world, and 
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need to be traveled to in order to be used. A great example are location markers such 

as the blue navigational aids in Far Cry 5 (199), see Figure 14. When the player enters 

a destination into the in-game map system, this overlay is created in order to guide 

the player to said location by car. This leverages player’s real-world experience with 

car navigation systems.  

 

Figure 14. An example of world-fixed UI in Far Cry 5. Notice the blue arrows laid over 
the road in front of the car (#1), acting as waypoints for the user driving the car to the 
destination as indicated by another piece of world-fixed UI (#2), indicating the distance 
to the destination.  

World-fixed UI is extremely prevalent in all forms of 3D experiences, especially when it 

comes to navigation. The ability to see immovable objects in a virtual space marked 

without occlusion allows the user to determine the validity of their overall course. 

World-fixed UI is a standard practice not only in video games but also in more real-

world scenarios. Google Maps (10), for example, has a novel Live View feature where 
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the user can use the video stream of their smartphone camera to get an AR 

experience. While the app does not add virtual waypoints to the street (opting for a 

separate view instead, see Figure 15), the parallels to the navigation approach in Far 

Cry 5 become immediately clear.  

 

Figure 15. Google Maps Live View feature. #1: world-fixed text panel with distance 
indicator, attached to destination (tall building behind tree, #2). A separate panel at the 
bottom shows a map with the user’s current location and next waypoints.  

While we define world-fixed UI as interface elements that are attached to immovable 

objects (and thus as having a fixed position), object-fixed UI is attached to an object in 

3D space and can travel with it. In video games, this is often used to mark non-

playable characters (NPCs), such as allies and enemies in combat situations. In Rise of 
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the Tomb Raider (64), the player can perform stealth actions to remain undetected 

when sneaking up on enemies. A skull icon on top of an NPC indicates the availability 

of such an action, see Figure 16, top. Another example of object-fixed UI comes from 

Life is Strange (77), where the main gameplay consist of the player moving through a 

high school and interacting with a variety of NPC and objects, see Figure 16, bottom. 

Unlike the NPCs in Rise of the Tomb Raider, these objects do not move.    

 

Figure 16. A: a skull icon on top of an NPC indicates a potential action for the player to 
take. When the NPC moves, the icon moves with it. B: object-fixed UI in the video game 
Life is Strange (77). Note how UI highlights potential interactions with objects. 

Object-fixed UI is contextual and needs to be updated according to the position and 

gaze direction of the user as well as the current game state to determine possible 
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interactions at that particular time. The visibility and interactivity of object-fixed UI 

thus depends on a variety of factors, and anticipating the user’s need for non-

persistent UI it is a challenging task.  

In VR, object-fixed UI becomes especially important when using VR controllers. 

Commonly, developers and designers can let the user compose complex interactions 

via controller-attached menus. In Tilt Brush (97), see Figure 17, users draw and paint 

in 3D, using static or animated materials and a variety of colors, stencils, and 

brushes. In order to allow the user to combine ingredients, the developers designed a 

multidimensional menu system where one VR controller allows the user to open and 

navigate between menus while the other controller lets the user make selections. 

These menus are attached to the 3D representation of the VR controllers and thus 

qualifies as object-fixed UI.   

 

Figure 17. Another example of object-fixed UI: a menu rendered on top of a VR controller 
representation in Tilt Brush.  

Finally, user-fixed UI describes elements that move with the player. Depending on the 

display system, user-fixed UI may be equivalent to screen-fixed UI; for instance, this is 

the case with first-person games and experiences as can be seen in Figure 12. In the 
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presence of a 3D avatar, such as in Dead Space (80), see Figure 18, user-fixed UI can 

be attached to the player’s representation of themselves. The UI is embodied into the 

player such that health and stamina are displayed not as abstract entities fixed to the 

screen but as part of the avatar’s space suit. Similarly, the remaining supplies and 

target reticle, relevant for defense against attackers, is presented as natural part of the 

device the avatar is using, not as an overlay visible only to the player.     

 

Figure 18. Dead Space with its minimalistic UI. #1: health and stamina. #2: remaining 
ammunition and targeting reticle  

Association 

Relationships between UI elements and virtual content, which Bowman et al. (38) refer 

to as “perceptual information” (p. 83), can be spatially explicit, meaning that the UI 
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element and the 3D object it relates to are in physical proximity (within the context of 

the virtual environment). The various action-focused overlays in Figure 16 are a good 

example, as are most object-fixed UI elements. Visually implicit associations, on the 

other hand, comprise cases where the UI element is removed from the object it refers 

to, but when selecting and interacting with one element (the object or the UI element), 

the other is highlighted as well. The bar graph in Figure 21 below is a good example; 

when the player places charges on a virtual asteroid (not pictured).the bar graph is 

updated to aid the player in finding the optimum charge level, keeping this vital 

visualization in one place.  

Level of aggregation 

Virtual environments can feature individual variables across multiple displays, 

combination of variables across displays, or all variables contained in one complex 

visualization. While we could not find many examples to illustrate the differences 

between these, the settlement information display from Civilization VI (88) in Figure 19 

exemplifies how UI elements with dense information displays can be used by the 

player to manage complex actions in a strategy game by condensing bigger amounts of 

data.  
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Figure 19. Settlement display in Civilization VI.  

Degree of manipulation directness 

The degree of manipulation directness indicates whether a UI element is susceptible to 

the user’s direct input or whether it is updated through the system based on the 

player’s actions.  Some 3D UI elements are static in that they cannot be changed 

through player input at all (static). This comprises all interface elements that do not 

reflect the user’s current state within the 3D experience. Common examples from 

video games are splash screens when the game is started, version numbers, and 

company logos. Completely static UI is quite rare and normally used to provide 

persistent information that is unlikely to change over the course of the experience. 

Most UI elements allow for at least some interactivity. Object-fixed UI, for example, can 

be moved through player interaction. Screen-fixed UI can be updated. Another 
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common form of interactive UI are health and status bars, see Figure 12, label #1. 

While these cannot be clicked, dragged, or otherwise interacted with directly, they are 

still affected by user actions (indirect manipulation).  

The most common fully interactive UI elements are buttons, lists, and sliders, as can 

commonly be found in the options section of video games, see Figure 20.  

 

Figure 20. Options menu in Fortnite (84), such as sliders for volume control and a list of 
options for a setting (#1) with two buttons (#2), active (left) and inactive (right).  

Degree of persistence 

UI elements are displayed either very briefly, for extended periods of time, or 

constantly. An example of the latter are the health and progress bars as shown in 

Figure 12, or the embodied UI in Figure 18. Elements with limited persistence are 
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usually displayed on-demand according to program logic, and are thus contextual. The 

object-fixed UI in Figure 16 is a great example; it only makes sense for these texts and 

icons to be shown when action can be taken by the player. The increasing prevalence 

of non-persistent UI elements, especially in 3D environments, allows for the 

development of the minimalistic UI encountered in that same figure.  

Degree of visual encoding 

Lastly, UI in 3D games is composed out of a combination of graphic symbols: 

geometric, linguistic, and pictorial. Since UI elements often encode game data in a way 

that is intuitively understandable for players, data visualization principles have a great 

influence on the design decisions for UI elements. The volume sliders in Figure 20 are 

based on 100% stacked bar charts, as are the health bars in Figure 12 and Figure 18. 

Figure 21 shows an example from the space exploration game Elite Dangerous (96): In 

order to mine valuable materials, the player can put seismic charges into asteroids. 

However, the player needs to carefully balance the amount of low, medium, and heavy 

charges to achieve an optimum yield balance. To communicate this, the developers 

implemented a bar chart with color-coding that visualizes state changes between 

charges (labels #1 and #2). Additionally, linguistic (#3) and pictorial (#4) symbols are 

used to communicate the current state of the player’s actions.  
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Figure 21. A bar graph to inform the player about the current charge level.  
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3. Research Questions 

Each user study in this dissertation has its own set of research questions. For 

convenience, they are listed together below. Hypotheses can be found in the 

corresponding sections for each study. We compiled an overview of hypotheses and 

confirmed/rejected status in Table 14, Table 15, and Table 16.  

User study 1 (Comparing Time, Accuracy, Satisfaction in VR vs. Desktop Registration 

User Interface (RUI), chapter 5): 

• RQ1: What position and rotation accuracy and completion time can be achieved 

with the three different RUI setups? 

• RQ2: What are the error and bias, i.e. the deviations for each axis as well as the 

cumulative deviation (see section Bias and error), for position accuracy in all 

three dimensions? 

• RQ3: How does task complexity (e.g., smaller tissue block size or more rotation, 

larger distance between tissue block and target) impact accuracy and 

completion time? 

• RQ4: What is the maximum performance level that a user can reasonably 

achieve, and how many practice tasks are required before performance levels 

out? That is, after how many tasks do users reach a plateau when accuracy or 

completion time do not significantly change anymore.  

• RQ5: What is the tradeoff between accuracy and completion time? For example, 

if users are asked to register fast, does accuracy decrease? If users are asked to 

register accurately, do they need a longer time to complete the task?  
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• RQ6: How satisfied are users with the results achieved in the three different 

setups? 

User study 2 (Using VR Data Visualizations to Improve Time, Accuracy, Satisfaction in 

VR vs. Desktop RUI, chapter 6): 

• RQ1: When presented with a VR visualization of their own movement data from 

the Ramp-Up phase during their Reflective phase, do users in the experiment 

cohort have a better performance in the following Plateau phase, measured in 

accuracy and completion time, compared to the control cohort who does the 

Plateau phase without a Reflective phase?  

• RQ2: Between-subject and within-condition, across cohorts, are there 

significantly different usage patterns between the experiment and control cohort 

during the Plateau phase? 

• RQ3: In the Reflective phase, which interactive tool do users most often apply 

(identified by logging all user inputs and state of the interactivity tools)?  How 

many times do they change the time slider (see Figure 43 below)? How often do 

they turn the kidney (base map) on and off (see Figure 40 below)? 

• RQ4: Within the experiment group, in the Reflective phase, are metrics on user 

actions and interactive tool usage, measured through telemetry, correlated with 

higher performance in the Plateau phase? 

• RQ5: In the mid-questionnaire between the intro and main part of the Reflective 

phase, what is the relationship between the task score for this questionnaire 

and the performance in the Plateau phase for 2D Desktop users? 
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User study 3(Improving Completion Time, Memory, and Satisfaction for Traversing 

Virtual Buildings Using VR Data Visualizations, chapter 7) 

• RQ1: Is there a difference in completion time between the control and 

experiment cohorts during trial 2?  

• RQ2: Is there a difference in the rate of change in completion time from trial 1 

to trial 2 between the two cohorts? That is, when computing the differences in 

completion time per trial and per subject, and then compare these values 

between the cohorts, is there a significant difference?  

• RQ3: When asked questions about the tasks and the virtual building after 

taking a break (control) and completing their Reflective phase (experiment), is 

there a difference in score between the two cohorts?  

• RQ4: What are the preferred choices of navigation methods during the last 

round of tasks?  

• RQ5: Is there a difference in self-reported satisfaction between the two cohorts 

at the end of the experiment?  
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4. Methods 

In Table 7, we provide a summary of the three user studies in this dissertation by 

number of subjects, cohorts, setups, and interaction types tested.  

Table 7. Overview of studies. 

 Study 1 Study 2 Study 3 

Title Comparing 
Time, Accuracy, 
Satisfaction in 
VR vs. Desktop 
RUI  

Using VR Data 
Visualizations to 
Improve Time, 
Accuracy, Satisfaction 
in VR vs. Desktop RUI 

Improving Completion 
Time, Memory, and 
Satisfaction for Traversing 
Virtual Buildings Using 
VR Data Visualizations 

Number of 
subjects 

42 84 (42 + 42 from 
Study 1) 

68 

Cohorts 
(control 
and 
experiment) 

1 2 2 

Setups 3 (2D Desktop, 
VR Tabletop, 
VR Standup) 

3 (2D Desktop, VR 
Tabletop, VR Standup) 

1 (VR) 

Interaction 
types 

 Filter, navigate, 
animate/replay 

Filter, navigate, link and 
brush  

User study 1, while not containing data visualizations of interaction types, served as 

control for study 2. Further, this study was motivated by and provides research 

evidence on how to best solve a practical problem by applying virtual reality to gross-

anatomical tissue registration. Finally, it represents a major research and development 

effort tied to an international scientific endeavor and thus constitutes a vital part of 

our dissertation research. 

Studies 2 and 3 had a control and an experiment cohort. The control cohort performed 

their tasks without any interventions. As mentioned above, the subjects in user study 

1 (see chapter 5) functioned as control cohort for the subjects in user study 2 (see 
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chapter 6). The procedures for each user study are illustrated individually in Figure 

25, Figure 31, and Figure 56.  
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5. User Study 1: Comparing Time, Accuracy, Satisfaction in 2D Desktop vs. VR RUI 

5.1 Introduction  

The human body consists of trillions of cells. Understanding what cells exist in which 

anatomical structures and spatial contexts is essential for developing novel 

approaches to curing diseases. HuBMAP is a research effort carried out by hundreds 

of researchers in several dozen institutions in the U.S. and abroad (184). The goal of 

the multi-year project is to create a reference atlas of the healthy human body at 

single-cell resolution, capturing spatial information about cells and tissues in 

unprecedented detail. In order to facilitate HuBMAP’s ambitious mission, different 

tools are being developed. This paper presents a novel 3D object manipulation user 

interface, called the Registration User Interface or (RUI), developed to support tissue 

registration performed by tissue mapping centers (TMCs), as well as Transformative 

Technology Development (TTD) and Rapid Technology Implementation (RTI) teams. In 

the remainder of this section, we review typical approaches to registering tissue data 

together with registration accuracy typically achieved. We then derive a list of 

requirements for a qualitatively novel approach to tissue registration and discuss 

research questions and hypotheses. 

5.1.1 Tissue registration procedure and prior work 

Developing a human reference atlas at single-cell resolution requires recording the 

size, position, and rotation of tissue extracted from living or post-mortem patients—

before the tissue is processed for spatially explicit analysis. Figure 22A shows a photo 

of a typical setup: a kidney was butterflied and placed on a dissecting board to capture 

its size and shape, as well as the size, position, and rotation of a tissue block (outlined 
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in pink) extracted from it. Commonly, a computer is close to the dissection work area 

so data can be entered and uploaded.  

The documentation of extraction sites is non-trivial as different donors might have 

organs of different sizes and the number and shape of anatomical structures (e.g., the 

number of renal pyramids per kidney) might differ across individuals. It is common to 

use exemplary organs derived from an individual donor’s data as a reference. An 

example is the male left kidney derived from the Visible Human (VH) dataset (3, 187) 

published by the National Library of Medicine (NLM). This 3D model is about 100 mm 

high (see green y-axis), 60 mm wide (red x-axis), and 40 mm deep (blue z-axis)—see 

Figure 22, B and C.  

 

Figure 22. Physical vs. virtual tissue registration. A: Bisected kidney on a dissecting 
board. Pink outlines indicate where the tissue block highlighted pink (shown in top right) 
will be extracted. B: RUI with reference kidney of about the same size in x-y view. C: RUI 
in z-y view with user interface that supports entry of tissue block size in mm, review of 
x, y, z position values, and change of tissue block rotation in 3D.  

Shown in Figure 22C is the interface used for entering ‘Tissue Block Size’ in mm and 

for rotating the tissue block (via sliders). Position can be adjusted by dragging the 
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tissue block to the correct location within the 3D reference organ. An x-y view and a y-

z view can be selected to check and correct the tissue position. The x, y, and z 

positions are also displayed to the user. Size, position, and rotation values can be 

reset by clicking on the corresponding circular arrow buttons.  

Different procedures exist to capture relevant information; resulting data is submitted 

to diverse clinical record-keeping systems with different metadata schemas. Different 

organs—e.g., lung (156), breast (143), thymus (71), and pancreas (4)—have rather 

different needs and are subject to many standard operating procedures (SOPs) and 

checklists (15, 133). A closer look at these SOPs and checklists developed for different 

organs by different authors reveals the lack of common procedures and 

documentation standards. More importantly for HuBMAP, existing data captures only 

partial or inconsistent spatial information (i.e., the level of detail at which this 

information is captured varies across protocols).  

Partial and inconsistent spatial information 

Pathologists and other wet-bench workers typically use SOPs—written as protocols 

(14, 219) and published on protocols.io—to ensure reproducibility, establish relevant 

terminology, and share otherwise disparate materials and instructions in a consistent 

framework. Most importantly for our research, they use SOPs to capture specific 

workflows such as extracting tissue blocks from organs (41), tissue preservation 

through freezing (8, 219), or preparing specimens for further analysis (9). Some of 

these protocols require the lab worker to capture the spatial origin of tissue in 

reference to an organ and/or its dimensions: e.g., some SOPs involve pictures of 

dissected organs or tissue blocks on dissecting boards with markings for length and 
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diameter units (8, 41, 115) (see Figure 22A), occasionally at different stages of the 

dissection process (114). The scale of the marker positions and the reported data is in 

the millimeter range. When using dissecting boards with markings is not feasible, 

some protocols supply abstract illustrations to show the extraction sites of tissue (98). 

The quality and purpose of these pictures vary; many are ad hoc, with inconsistent 

lighting and varying quality, or no pictures at all (165). In some cases, the authors 

provide no exemplary pictures but give a verbal description of how the donor organ 

has to be aligned and dissected (164). This causes many of the existing protocols to 

capture only partial and inconsistent spatial information. Manual annotations in 

these pictures offer a small amount of orientation with regard to the spatial 

provenance of the tissue block, but this kind of documentation lacks detail and 

reproducibility across teams and organs. Further, inferring the correct dimensions of a 

tissue block from a photo can be challenging, depending on the distance between the 

side of the tissue facing the viewer and the cutting board.  

Limited computability of photos 

A second issue with the current record-keeping practices for spatial origins of tissue 

blocks is that images of extracted tissue and/or organs, if present at all, are not 

computable. To be of value for the HuBMAP atlas, tissue spatial data must be 

provided in a format that is uniform across organs and can be used to correctly 

determine the size, position, and rotation of tissue blocks in relation to a 3D reference 

body. Images with spatial annotations do not support this, and advanced techniques 

such as computer vision algorithms cannot be trained and used due to the quality and 

limited quantity of existing images. While photos provide an efficient way of archiving 

general spatial information in the context of individual labs, they do not provide the 
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precision and standardization required for reference atlas design. To overcome this 

limitation, we implemented an online service that lets subject matter experts (SMEs) 

size and register 3D tissue blocks within 3D reference organs to generate unified data 

across tissue types.  

Challenges of 3D manipulation 

The Registration User Interface (RUI) was developed to address practical concerns 

regarding tissue registration. However, there are several known challenges when 

manipulating 3D objects in 3D. We assume the SME is an able-bodied individual with 

two hands and a basic understanding of how to use photography equipment and a 

paper or digital documentation sheet. The SME places the tissue on the dissecting 

board, aligns it with the provided grid system, takes photos, and writes down 

annotations.  

In the proposed RUI, there are various cognitive challenges as 3D manipulation is 

non-trivial. In our review of prior work, we focus on two methods to enable a user to 

manipulate a virtual object in 3D space: widgets and extended input devices. The de-

facto standard in many 3D modeling applications is the use of a mouse and color-

coded virtual widgets attached to the object, as discussed in Maya (17) and Blender 

(30). These widgets allow the user to perform position, rotation, and scaling 

operations. Schmidt, Singh and Balakrishnan (168) proposed a user-input-based 

extension to the traditional widget system; but note that even the most experienced 

participants in the evaluation study needed twice as long to complete the assembly 

tasks when using their system than when using the traditional version. A similar 

framework was proposed in 1995 by Bukowski and Séquin (46), who prototyped their 
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interaction language for “pseudo-physical behavior” from the user, where the 2D 

motion of the mouse cursor is extrapolated into 3D motion in the virtual environment.  

In addition to using widgets to perform 3D manipulation, there exists a body of 

literature about input devices extending the standard computer mouse for these 

tasks. Balakrishnan et al. (22) developed the “Rockin’Mouse”, a 4-DoF device that 

allowed users to control position and rotation without having to switch between 

modes. Their pilot study found that users were able to complete a set of block-

matching tasks 30% faster with a Rockin’Mouse than with a regular mouse. In order 

to explore the design space of a multi-touch mouse, Villar et al. (209) presented a 

series of five prototypes using different touch input layouts. They found that 

ergonomics and form-factor were important design aspects for user satisfaction, 

although their study was aimed at gathering qualitative results rather than 

quantitative performance measures. For their GlobeMouse and GlobeFish, Froehlich et 

al. (95) separated position and rotation manipulation using a trackball (rotation) 

connected to an inner and outer frame (position). When tested against a commercial 

option in a study, they found that the completion times for their devices were 

significantly faster than for the commercial SpaceMouse, although they found a 

similarly strong learning effect for the three devices tested over the course of two sets 

of four tasks per device (with training sessions before each task). A commercial 

approach to the extended mouse is the aforementioned SpaceMouse (1), a six-DoF 

device that lets a user position and rotate a 3D object along and around all three axes 

at the same time using a self-resetting internal mechanism when no user input is 

given. A major issue for this advanced, modified hardware is the steep learning curve, 
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and the fact that these are prototypes makes their widespread deployment and 

adoption not feasible.  

While the aforementioned projects feature variations on the widely used mouse input 

device, recent efforts have focused on alternative input devices. Soh et al. (185) 

developed a simple hand gesture interface for the Microsoft Kinect to enable 

translation of rotation of 3D objects. Similarly, Lee et al. (125) used a webcam and a 

projector to transform a piece of cardboard into a movable, handheld 3D device that 

lets users rotate the projected 3D object. In a more recent paper, Mendes et al. (138) 

used the HTC Vive and Unity to design a system for custom translation and 

manipulation axes (MAiOR). In a user study comparing MAiOR to a regular six-DoF 

approach without separation of manipulation and rotation as well as a system with 

virtual widgets, they found that the approach with traditional widgets achieved the 

highest overall success rate but came at the cost of higher completion times with 

increasing task difficulty and confirmed that mid-air manipulations with VR 

controllers lack precision.  

Overcoming the challenges of 3D manipulation 

Building on and extending this prior work, the HuBMAP RUI aims to support scalable 

and computable tissue registration and data management. It lets experts use a nearby 

computer to digitally capture the size, position, and rotation of tissue blocks in 

relation to a reference organ, together with important metadata such as name, tissue 

ID, date, and time.  

This paper presents the results of user studies that aim to determine and compare 

registration accuracy and speed for different user interfaces. Specifically, we compare 
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the 2D desktop setup with two VR setups—using a sitting and a standing setup. All 

three user interfaces support the general registration task shown in Figure 23 and 

detailed in Section 5.2.1. In all three setups, the subject sees a reference organ kidney 

with a virtual purple target block on the left and a white tissue block on the right that 

needs to be matched in position and rotation with the target block. In all cases, the 

sizes of the tissue block and the target block are identical, which resembles the real-

world scenario in which a tissue block has just been extracted from an organ.  

 

Figure 23. The task setup in our user study. Reference organ with target block indicated 
(purple) and tissue block (white) to be registered into the target block. The light blue 
arrow indicates block centroid (mid-point) distance. Task difficulty increases as the 
tissue blocks get smaller, block rotation increases, and distance between the blocks 
increases. A: 2D Desktop setup. B: The two VR setups. 

The reference organ in our study appears in different sizes in the 2D Desktop setup 

and the two VR setups (see Figure 23). The kidney is 113 mm tall on the screen in the 

2D Desktop condition and 590 mm tall in VR. We chose these different sizes to make 

use of the ability in VR to interact with objects that would not normally fit on a regular 
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laptop screen. We elaborate on this (and its implications for data analysis) when 

presenting the results in Section 5.3. Three color-coded coordinate axes (implemented 

as long, thin cylinders running along the edges of each cube, conjoint at one of its 

corners) are used to indicate tissue and target block rotation. They are colored red, 

green, and blue for x-, y-, and z-axis, respectively. As we present the users with 

increasingly difficult registration tasks (see Figure 25), subjects must adjust not only 

the position but also the rotation of the tissue block to match the position and rotation 

of the target block. The focus on these adjustments mirrors the real-world need for 

these 3D manipulations to capture the spatial provenance of tissue blocks with regard 

to a reference organ in the RUI.  

5.1.2 Requirements for registration user interface 

Informal interviews and registration tests with revealed various requirements for the 

RUI. Requirements can be grouped into five categories and are discussed 

subsequently. 

1. Metadata Entry: The RUI must support entry of data such as user name, organ 
name, tissue block size, and date and time of registration. This metadata must 
then be sent to a database for ingestion and usage in the HuBMAP data 

infrastructure and portal.  
2. Accuracy: The RUI must support gross-anatomical-tissue registration at about 

one mm for position and about 20 degrees for rotation accuracy.  
3. Training and Completion time: The RUI should not require more than five 

minutes to learn, and each tissue registration should not take more than one 

minute to complete.  
4. Satisfaction: The RUI should be easy to use, and subjects should feel a sense 

of accomplishment after they perform the registration task.   
5. Deployment: The RUI should be usable on a computer in a lab, ideally right 

after tissue has been extracted. A typical lab computer uses a Windows or Mac 

operating system and runs Chrome, Firefox, or other web browsers. A typical 
window size is 1920 x 1080 (full HD) or 3840 x 2160 (4K) pixels at 72 DPI.  
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5.1.3 Research questions and hypotheses 

Given the overall domain task and the requirements stated in Section 5.1.2, there are 

six research questions (RQ) this study aims to answer. We also present associated 

hypotheses (H) here: 

RQ1: What position and rotation accuracy and completion time can be achieved with 

the three different RUI setups? 

H1a: Users in VR Tabletop and VR Standup achieve significantly higher position 

accuracy than users in 2D Desktop. 

H1b: Users in VR Tabletop and VR Standup achieve significantly higher rotation 

accuracy than users in 2D Desktop. 

H1c: Users in VR Tabletop and VR Standup have significantly lower completion times 

than users in 2D Desktop. 

RQ2: What are the error and bias, i.e. the deviations for each axis as well as the 

cumulative deviation for position accuracy (see Bias and error) in all three 

dimensions? 

H2a: We do not expect any major bias for any setup in any dimension.  

H2b: We expect the error to be greatest for the 2D Desktop setup due to its restricted 

input devices and limited viewing positions.  

RQ3: How does task complexity (e.g., smaller tissue block size or more rotation, larger 

distance between tissue block and target) impact accuracy and completion time? 
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H3a: More complex tasks lead to lower position accuracy for all setups. 

H3b: More complex tasks lead to lower rotation accuracy for all setups. 

H3c: More complex tasks lead to higher completion times for all setups. 

RQ4: What is the maximum performance level that a user can reasonably achieve, and 

how many practice tasks are required before performance levels out? That is, after 

how many tasks do users reach a plateau when accuracy or completion time do not 

significantly change anymore.  

H4: VR users need a lower number of tasks to plateau than 2D Desktop users. 

RQ5: What is the tradeoff between accuracy and completion time? For example, if 

users are asked to register fast, does accuracy decrease? If users are asked to register 

accurately, do they need a longer time to complete the task?  

H5: In all setups, the more time users spend on a task, the higher position and 

rotation accuracy they achieve.  

RQ6: How satisfied are users with the results achieved in the three different setups? 

H6a: Users in both VR setups are more satisfied with their performance than 2D 

Desktop users.  

H6b: There is no significant difference in user satisfaction between VR Standup and 

VR Tabletop users.  
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The paper is organized as follows: In Section 5.2, we introduce methods, including 

study design, task difficulty, and performance metrics. In Section 5.3, we present the 

qualitative and quantitative results of this study before interpreting the results with 

regard to the requirements from Section 5.1.2 and the research questions and 

hypotheses stated in Section 5.1.3. In Sections 5.4 and 5.5, we discuss results and 

present an outlook on planned future work. 

5.2 Materials and methods 

This section presents the overall study design, the three different hardware/software 

setups, task difficulty metrics and synthetic tasks generation, as well as human 

performance metrics, plateau, and a satisfaction score computation. A power analysis 

was conducted prior to running the experiment to determine the number of subjects 

required to achieve significant results. 

5.2.1 Study design  

We used a typical user study design featuring a study information sheet (SIS) in the 

beginning to get user consent, followed by a pre-questionnaire, tutorial and 

experiment tasks, and a post-questionnaire. All 42 subjects were run in person by one 

of the authors of this paper.  

The main part of the experiment asked subjects to use one of three setups: 2D 

Desktop, VR Tabletop, or VR Standup. All three setups are shown in Figure 24, A-C. 

Users were randomly assigned to one out of these three setups. Different levels of task 

difficulty were used for the tutorial, Ramp-Up, and Plateau tasks (see Section 5.2.2). 

Tasks were identical for all users regardless of setups (performance metrics are 
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detailed in Section 5.2.3). Users determined for themselves when a task was done and 

were provided the equivalent of a “Next” button in all three setups. More information 

can be found in videos showcasing all three setups from a user’s perspective on 

GitHub (https://github.com/cns-iu/rui-tissue-registration). The SIS, pre-, and post-

questionnaire data was presented and gathered using an online Qualtrics form. The 

tutorial and experiment tasks used a setup implemented in the Unity game engine 

(200). The Qualtrics form, along with documentation of logged data formats and data 

analyses, can also be found on GitHub.  

All subjects used the same Alienware 17 R4 laptop with a display diagonal of 439.42 

mm (17.30 in), running Unity 2019.4 on Windows 10 with a secondary monitor 

attached for ease of configuring the individual steps of the experiment. The laptop had 

an Nvidia GTX 1070 with 32 GB RAM of memory. A 1080p webcam recorded audio 

and video. For the VR setups, we used a 2016 HTC Vive with two Vive controllers. We 

ran the application for all three setups straight out of Unity. Data was collected using 

a custom C# script, writing data to a CSV file at a frequency of 10 Hz every time the 

user pressed a button. 

The research facilitator could observe the subjects’ viewpoint on the laptop display, 

which was recorded with a screen-capturing software. We conducted the study in a 

collaborative space in a public university building and took precautions to preserve 

our subjects’ safety. The usable space for VR Standup and VR Tabletop users was 

around 10 x 10 ft (3 x 3 m). 2D Desktop users sat at a 4 x 4 ft table (1.2 x 1.2 m).  

https://github.com/cns-iu/rui-tissue-registration
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Figure 24. Setup, screen, and actions for 2D Desktop, VR Tabletop, and VR Standup. A-

C: Three RUI setups with a human subject. D-I: screenshots of the user interface. J: 
Required actions. The tissue block is outlined in blue, the target block in green, and the 
kidney—providing context and domain relevance—in pink. Tasks are submitted by 
selecting the purple NEXT/red button. The user could reset the position or rotation of the 
tissue block by pressing the corresponding yellow-brown virtual (2D Desktop) and 
physical buttons (VR). 

The three setups support nearly identical functionality as detailed subsequently.   

The three setups 

As described earlier, in both VR setups, the kidney was around 590 mm tall. In 2D 

Desktop, on the 1080p screen, the kidney appeared at a height of 113 mm. We chose 

these different sizes to make use of the ability in VR to display and interact with 3D 
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objects in a much larger size than it would be possible on a standard laptop display. 

Figure 24, A-C, illustrates these differences with a human subject for scale.  

2D Desktop 

The screen in the 2D Desktop setup (see Figure 24A, D, G) consisted of a 3D work area 

covering most of the screen and featured a transparent model of a human kidney with 

an inlaid 2D image showing a schematic drawing of the vasculature with a 100 x 60 x 

60 mm grid wrapping around the kidney. We added a progress bar on the bottom right 

with a text field indicating the number of completed tasks.  

In terms of controls, the user could move the tissue block by clicking and dragging it 

with the left mouse button; they could also rotate it around each axis with the three 

sliders on the right side of the screen. Both position and rotation could be reset via 

button clicks.  

The setup had two cameras the user could choose between: an orthographic camera 

(always aligned with either the x- or the z-axis) and a perspective (“preview”) camera. 

The user could switch between the two by clicking the yellow eye icon on the center 

right, top edge of the screen. This preview camera could be rotated with relative 

freedom by clicking and dragging the left mouse button (see Figure 24G). The main 

camera, however, was less movable. The toggle switch in the top center allowed a 

movement of 90 degrees around the kidney’s upward-facing axis, allowing the user to 

go back and forth between two predefined viewpoints with a smooth, animated 

transition. The usage of an orthographic camera is common in 3D modeling software 
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as it makes the alignment of objects easier by taking away one dimension. The user 

could proceed to the next task by clicking a “Next” button. 

VR Tabletop 

In the VR Tabletop setup (see Figure 24B, E, H) the user was presented with a 3D 

model of a kidney and the same tissue block and target block as 2D Desktop users. As 

the name implies, the user sat at a table, both in the physical and virtual world. This 

allowed us to test whether simulating a physical work desk environment helped with 

the 3D alignment. The functionality provided through UI buttons and the mouse in the 

Desktop setup was implemented using a VR headset and VR controllers as pointer 

devices. The trigger button on the right hand allowed the user to grab and move the 

tissue block. Pressing the left touchpad or menu triggered a reset animation for the 

position or rotation of the tissue block, respectively. By default, tooltips were displayed 

atop the controllers, which could be turned off by pressing the right menu button. The 

user could rotate the kidney around its y-axis with the touchpad on their left hand 

and move the tissue slice with their right hand. The ability to turn the kidney was 

unique to VR Tabletop. The user could proceed to the next task by touching a virtual 

red buzzer on a stand at a height of around three ft (90 cm) above floor level.  

VR Standup 

This setup (Figure 24C, F, I) was similar to VR Tabletop; however, users stood in front 

of a reference kidney, able to explore it from 360 degrees while being assisted by the 

research facilitator for physical safety. The user could not rotate the kidney in this 

setup but was able to walk around the kidney to see it from different viewpoints. 
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Otherwise, the implementation was identical, with VR controllers as pointer devices 

and a virtual red buzzer to proceed to the next task. 

Pre-questionnaire 

After being welcomed to the experiment, subjects were asked to fill out a pre-

questionnaire using an online survey software running on the same laptop we used for 

the actual tasks. This pre-questionnaire inquired about the subjects’ prior experience 

with virtual reality and 3D video games and about their familiarity with different types 

of data visualizations such as graphs, charts, tables, maps, and networks. 

Additionally, we asked our subjects to disclose demographic information such as 

native language, job title, age, and gender. Items of specific interest for our user study 

were also whether users were right-handed or left-handed, their height, and whether 

they had a vision impairment. The complete questionnaire is available at 

https://github.com/cns-iu/rui-tissue-registration. 

Tutorial task 

After answering the pre-questionnaire, the subject was either presented with the 

experiment application in Unity (2D Desktop) or they donned the VR gear and got into 

position (VR Tabletop and VR Standup). They then listened to an approximately three-

minute audio tutorial explaining the elements in the scene (kidney, tissue block, target 

block), what the tasks entailed, how to move and rotate the tissue block in a given 

setup, how to reset the position and location of the tissue block if needed, and how to 

submit task results and get a new task. The prerecorded audio ensured the same 

delivery of the content to all subjects. While the audio was playing, the subject was 

encouraged to practice moving and rotating the first tissue block, and to explore the 

https://github.com/cns-iu/rui-tissue-registration
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2D screen or 3D scene in front of them. We encouraged subjects in VR Tabletop and 

VR Standup to quit the experiment should they feel nauseous. The research facilitator 

monitored subjects at all times to ensure their physical safety. Having a facilitator 

present also helped many first-time VR subjects to correctly strap on the headset and 

move between VR and physical world without damage to the equipment or themselves.  

Ramp-up tasks 

Following the tutorial task, in the Ramp-Up phase, we asked subjects to solve 14 

increasingly difficult tasks over time (see explanation of task difficulty in Section 

5.2.2). As the task numbers increased, the size of the blocks to be placed became 

smaller and the rotational differences and distance between tissue and target block 

increased. After a pilot study with eight subjects, we decided to use 14 tasks to cover 

major difficulty levels while allowing every subject to finish the entire experiment in 60 

minutes.  

In the pilot study, some subjects spent unusually long times in the VR setups to 

achieve near perfect accuracy. To avoid this, we added three interventions: First, 

during the tutorial, we mentioned that 100% accuracy was not possible and asked 

subjects to use their best judgement when determining whether they were done with a 

task. Second, in the VR setups, we added a constantly visible text box next to the 

kidney with a reminder that 100% accuracy was not possible (see Figure 24E). Third, 

we gave subjects alternating audio prompts for odd tasks (focus on speed) and even 

tasks (focus on accuracy) in all three setups—this also let us explore the influence of 

task complexity on accuracy and completion time (RQ3, see Section 5.3.4), and 

tradeoffs in speed versus accuracy (RQ5, see Section 5.3.5).  
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Plateau tasks 

Interested in understanding the number of tasks it takes before a user achieves their 

maximum performance in terms of accuracy and completion time, we asked subjects 

to register 30 blocks of identical size as fast as possible during the Plateau phase 

(RQ4, with results in Sections 5.3.2 and 5.3.3). The Plateau phase followed 

immediately after the last task of the Ramp-Up phase. We determined this number of 

tasks in pilot studies where we aimed to achieve a balance between subject 

exhaustion, total participation time, and detectability of a plateau. Given that subjects 

in the Desktop setup spent around three times longer on tasks as subjects in the VR 

setups (see Section 5.3.3), the number of tasks in the Plateau phase had to be high 

enough for us to detect a performance plateau while ensuring a timely finish of the 

experiment. A more complete description of Plateau phase task difficulty can be found 

in Section 5.2.2 and Figure 25.  

Post-questionnaire  

After finishing the registration tasks part of the study, the Unity application was 

closed, and each subject (now out of VR if part of VR Tabletop or VR Standup) 

completed a post-questionnaire about their experience. We included this post-

assessment to learn how much users liked the registration interface, to determine 

what they would improve, and to compare user satisfaction across setups. Satisfaction 

score compilation is detailed in the section titled Satisfaction. 

5.2.2 Task difficulty and stimuli generation 

Task difficulty in the Ramp-Up phase of our study is a combination of the distance 

between tissue block and target block, the size of both blocks, and the angular 
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difference between both blocks (see Figure 25). During the Ramp-Up phase, distance, 

angular difference, and size were continuously increased until the distance was 200% 

of the kidney height, the angular difference was 180 degrees, and the side length of 

the two blocks were only 5% of the kidney height. To generate stimuli used in the 

Ramp-Up phase, we used Lerp(), a native Unity method for linear interpolation (see 

Equation 1) to interpolate between start and end values. To increase angular 

difference over time, we used Slerp(), a different implementation of the aforementioned 

Lerp() function (for rotations), to gradually rotate the target block towards an end 

rotation of 0, 270, and 180 (around the x-, y-, and z-axis) using linear interpolation. 

𝐿𝑒𝑟𝑝 = {

𝑎,
𝑏,

𝑎 + (𝑏 − 𝑎) ∗ 𝑡
 

, 𝑖𝑓 𝑡 ≤  0
, 𝑖𝑓 𝑡 ≥  1

        , 𝑖𝑓 0 < 𝑡 <  1
} 

Equation 1. Formula to compute task difficulty. 

Distance and angular difference were smallest in the tutorial at 30% of the kidney 

height and 0 degrees rotational difference. Similarly, the length of each edge in both 

blocks was 20% of the kidney height, initially. Finally, in the Plateau phase, these 

values were consistent, with the distance and size values at around the same level of 

difficulty as the average Ramp-Up task (115% the kidney height for distance and 

12.5% of the kidney height for size) but at maximum angular difference. Note that 

while we only show one Plateau task in Figure 25, there were 30 identical ones. Figure 

25 also shows the tutorial (simplest), 14 increasingly difficult Ramp-Up tasks, and the 

30 Plateau tasks (all of same task difficulty). Details on sizes, rotations, and distances 

used for the tasks are provided together with information on audio prompts. 
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Figure 25. Task setup and levels of difficulty used in this study. The offset (computed 
via Equation 1) is a value that is added to gradually increase the distance and angular 
difference between the two blocks, and that is used to gradually decrease the size of the 
two blocks. Note that due to layout, only 13 out of the 14 Ramp-Up tasks are illustrated 
on the left.  

The computation of Lerp() requires three values, where a is the start value (easiest), b 

is the end value (hardest), and t is an interpolation value between 0 and 1. For every 

task, t is computed by dividing the current task number by the total amount of Ramp-

Up tasks (14). At task number 0 (i.e., the tutorial task), t evaluates to 0, which causes 

the function to return the start value. At task number 14 (the last Ramp-Up task), t 

evaluates to 1, prompting the function to return the end value. For any task in 

between, the function returns the start value with an offset value that increases over 

time. As input, Lerp() uses 3D vectors while Slerp() uses 3D rotations.  
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To ensure that task difficulty is identical across setups, we normalized each of the 

difficulty parameters (distance, rotational difference, size) by the height of the kidney 

in each condition. Figure 25 shows the tissue blocks and target blocks used 

throughout the experiment alongside the kidney for scale. The other columns indicate 

the different values for distance, angular difference, size, number of tasks, and audio 

prompts.  

5.2.3 Performance metrics, plateau, and satisfaction score  

To analyze survey and task data, we defined three performance metrics (position 

accuracy, rotation accuracy, and completion time) as well as a satisfaction score.  

3D position accuracy 

To answer RQ1 and RQ2, we needed to assess the position accuracy for each subject. 

Position accuracy equals the distance of the centroids of the tissue block and the 

target block, see light blue arrow in Figure 23. We compute the distance at run time 

using Vector3.Distance(), a static method in Unity that returns the distance 

between two points in 3D space. The position of both blocks and the centroid distance 

was collected at 10 Hz (i.e., 10 times each second). 

To make use of the various possibilities for scaling in VR, the kidney was displayed in 

different heights across setups (but always with the same width-to-height-to-depth 

ratio). Measured from the lowest to the topmost vertex, the kidney in the two VR 

setups was 0.59 Unity scene units tall. In VR, scene units correspond to physical 

meters, so the kidney appeared at a height of 590 mm. Similarly, in the 2D Desktop 
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setup, the kidney appeared at a height of 113 mm on the laptop display (see Figure 

23). In order to compare position accuracy results between 2D Desktop and the VR 

setups, we normalized these values by dividing them by the height in which the kidney 

appeared to the user. When discussing the results in Section 5.3.2, we append the 

subscript “norm” to denote normalized position accuracy values.  

Bias and error 

We also recorded raw position data for both blocks to compute bias and error for each 

tissue block placement (see Section 5.3.2). We define error as the median distance 

from every placed tissue block from the target block. This can be computed for all 

three dimensions, enabling us to describe position accuracy in a higher precision than 

just relying on a one-dimensional distance value. Bias, on the other hand, is the three-

dimensional Euclidean distance d(p,q) with the Cartesian coordinates for p being the 

target centroid position normalized to 0 and the coordinates of q being the median 

errors in the x, y and z-dimensions.  

3D rotation accuracy  

Rotation accuracy equals the angular difference between the two tissue blocks at task 

submission (see Figure 23). For ease of analysis, it was reduced to an individual 

number between 0 (exact same rotation) and 180 (diametrically opposite rotation). We 

used Unity’s built-in Quaternion.Angle() function to compute this angle. Angle() takes 

two orientations, each consisting of three angles, expressed either as Euler angles or 

Quaternions, and returns a single float value between 0 and 180.  

This means that several combinations of different rotations between tissue block and 

target block could yield the same angular difference. In order to preserve as much 
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detail about the subject’s action as possible, equivalent to the position, we logged the 

rotation of both blocks throughout the experiment as well. This allowed us to analyze 

the angular difference for all three axes (see Section 5.3.2).  

Completion time  

Completion time refers to the amount of time between the submission of a task and 

the submission of the previous task. Completion time is measured in seconds.  

Performance plateau  

During the Plateau phase (see section titled Plateau tasks and Figure 25), subjects 

perform 30 identical tasks, providing a unique opportunity to identify if and when a 

subject achieves a performance plateau. A plateau of a performance variable (task 

completion time, centroid accuracy, or rotation accuracy) is reached when the 

deviation of the performance variable does not exceed the mean performance of the 

subject until the end of the Plateau phase. As mean performance, we consider the 

average performance in a moving window of 20 tasks of the subject to reduce the 

influence of possible performance outliers. This width of the moving window supplies a 

stable mean by considering a certain inertia in performance improvement without 

including at all times the extreme values that can often be found towards the 

beginning and the end of the Plateau phase. For each subject, we analyzed after which 

task the performance stabilized by iterating through a recursive process, in which the 

relative deviation of the last task of the Plateau phase is calculated. If it does not 

exceed one (thus if the deviation of the performance variable in this task is not higher 

than its mean) we iterate this calculation for the previous task until we arrive at a task 

where the relative deviation is larger than 1. We consider all tasks after this (until the 
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last task of the phase) to be on a performance plateau. If a subject reaches a 

performance plateau, we take the average performance (for example, mean completion 

time per task) of all the tasks that are completed after reaching this plateau. 

Satisfaction  

To assess user satisfaction, we included a corresponding item in the post-

questionnaire via a five-point Likert scale from one (not at all satisfied) to five (very 

much satisfied), with three being a neutral value, and we report results aggregated by 

setup. This pertains to RQ6 (with results presented in Section 5.3.6). 

5.3 Results 

This section presents subject demographics, performance and satisfaction for all three 

setups, and a comparison of results plus discussion of requirements and research 

questions presented in Sections 5.1.2 and 5.1.3.  

5.3.1 Demographics 

We solicited 43 subjects for in-person user study appointments between 30 and 60 

mins. We had to drop one subject from the analysis for not meeting the age 

requirement for participation, leaving us with 42 subjects. Subjects spent an average 

of 43 minutes with the experiment, including pre- and post-questionnaire.   

The gender split in our experiment was almost exactly 50/50, with 20 female and 21 

male subjects and one subject preferring not to specify gender. In terms of age, 10 

were between 18 and 20 years old, 29 were between 21 and 30, one between 31 and 

40, and two between 51 and 60. There were 34 English, four Chinese, two Bengali, one 

Russian, and one Spanish native speaker. All subjects except one were right-handed. 
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In terms of vision impairments, 20 indicated near-sightedness, four far-sightedness, 

three preferred not to answer, two reported astigmatism, one reported to be both far- 

and near-sighted, and one presbyopia. 11 subjects reported perfect vision. All subjects 

were allowed to wear glasses during the experiment.  

5.3.2 Accuracy 

To answer RQ1 and RQ2, we analyzed the data for differences in position and rotation 

accuracy in the tissue block placements between the three setups for the Plateau 

phase. Results are plotted in Figure 26.  
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Figure 26. Graphs for position and rotation accuracy. A-I: Scatter graphs showing the 
(kidney height) normalized error for position accuracy during the Plateau phase. Each 
dot represents one of the 30 tissue block placements. The blue cross at the origin of each 
scatter graph shows the location of the target block. The blue dot shows the average of 
all centroids (bias). J-L: Line graphs with rotation accuracy for each axis (x, y, z). 

When comparing distance between the centroids of the blocks for each user after they 

had reached their position accuracy plateau during the Plateau phase, we found no 

significant difference between 2D Desktop, VR Tabletop, and VR Standup subjects 

when normalized by the height of the kidney (2D Desktopnorm = 0.0118, VR 

Tabletopnorm = 0.0114, VR Standupnorm = 0.0125), prompting us to reject H1a. 

Investigating the error for each axis, we found one error that stood out: 2D Desktop 

subjects tended to place the tissue blocks towards the negative space of the x-axis 

(median x-errornorm = -0.01138; see Figure 26, A and B). This error for the 2D Desktop 

setup was significantly higher than the y- and z-errors (p < 0.001), prompting us to 

confirm H2b. We need to emphasize that the errors and biases are extremely minor. 

In fact, this median x-errornorm for 2D Desktop (-0.01138) corresponds to just 1.138% 

of the kidney height of 113 mm, or 1.29 mm, which, in terms of gross-anatomical 

registration accuracy, is more than sufficient.   

Further, this error could possibly be ameliorated through a change in camera control 

for the user. It is possible that the x-error occurs due to the main camera in the 2D 

Desktop setup being aligned with either the x-axis (side view of the kidney) or the z-

axis (front view), oriented towards the positive x-axis space. This could have caused 

subjects to have a bias on that axis. We explain a planned improvement of the user 

interface in Section 5.4. The x-errornorm for 2D Desktop caused a bias (biasnorm = 

0.01146) about three times larger than the bias for VR Tabletop (biasnorm = 0.00372) 
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and about 7.7 times larger than VR Standup (biasnorm = 0.00148), prompting us to 

confirm H2a.  

In terms of rotation accuracy, subjects in both VR setups outperformed 2D Desktop 

subjects with median rotation accuracies of 16.3 degrees (2D Desktop), 4.3 degrees 

(VR Tabletop), and 5.0 degrees (VR Standup) during the Ramp-Up phase. The median 

Plateau levels were 5.88 degrees (2D Desktop), 3.89 degrees (VR Tabletop), and 4.67 

degrees (VR Standup). While the slight improvement for the VR setups can likely be 

attributed to the learning effect (since the Plateau phase came after the Ramp-Up 

phase), the jump in accuracy for 2D Desktop users stands out. We assume that many 

subjects became more familiar with the rotation sliders over time and were able to 

memorize the values for each axis as all tasks in the Plateau phase were identical. 

Figure 26, J-L, shows the rather severe differences in rotation accuracy not only 

between the setups but also between individual axes for 2D Desktop subjects during 

the Plateau phase. The mean deviation around the x-axis was relatively small (4.9 

degrees) but rather exorbitant for the y-axis at (-54.15 degrees). We can see a clear 

upward trend for y-axis as subjects progressed through the experiment and improved 

over time (see Figure 26J, middle line graph). Given these results, we accept H1b.  

5.3.3 Completion time  

Task completion time for the three setups and both phases is shown in Figure 27 

using a series of boxplots. 
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Figure 27. Completion time for both phases and all three setups. A-C: Ramp-Up phase. 
D-F: Plateau phase. The vertical dash-dot line (black arrow) indicates after what task 
the plateau was reached, on average.  

In the Ramp-Up phase, we found significant differences between the 2D Desktop and 

both VR setups but no difference between VR Tabletop and VR Standup. On average, 

subjects needed 67.3 seconds for a placement task in 2D Desktop but only 16.5 

seconds in VR Tabletop and 16.3 seconds in VR Standup, yielding a significant 

difference in completion time. The results of the VR setups do not differ from each 

other significantly. Further, in Figure 27, one can clearly see the fluctuating medians 

for the completion time depending on the task. During odd tasks, subjects were given 
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a prompt to focus on speed; during even tasks, we asked them to focus on accuracy. 

This is mirrored in the graphs for all three setups but especially so for VR Tabletop. 

We discuss this in more detail in Section 5.3.5.  

Regarding RQ4, in the Plateau phase, the median Plateau level for 2D Desktop users 

was 22.6 seconds after 8.3 trials versus 7.1 seconds after 3.43 trials for VR 

Tabletop and 7.39 seconds after just 1.5 trials for VR Standup. Thus, it takes 2D 

Desktop subjects longer to reach a completion time plateau. Figure 27, D-F, shows the 

distribution of completion times during the Plateau phases. Given these findings, we 

accept both H1c (lower completion times for both VR setups) and H4 (2D Desktop 

subjects need more trials to reach completion time plateau). 

5.3.4 Influence of task complexity on accuracy and completion time 

To answer RQ3, we computed the impact of task complexity on task accuracy and 

completion time during the Ramp-Up phase. Figure 28 shows position accuracy in mm 

on the y-axis (i.e., centroid distance), completion time in seconds on the x-axis, and 

task difficulty (circle area size) for each setup.  
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Figure 28. Position accuracy vs. completion time dependent on tissue block size, with a 
log-log scale. 

For VR Tabletop and VR Standup, we can see a strong cluster of records at 13.3 

seconds and 13.4 seconds, respectively (median completion time). This is less 

apparent for 2D Desktop (median = 54.1 seconds) where there is more than one 

cluster. As becomes apparent from Figure 28, we found no significant correlation 

between task complexity and position accuracy for any setup, requiring us to reject 

H3a. We did, however, find a significant and positive Pearson correlation between task 

complexity and rotation accuracy, for all setups (2D Desktop: 0.457, p < 0.001; VR 

Tabletop: 0.167, p < 0.05; VR Standup: 0.231, p < 0.01). We thus accept H3b. Finally, 

for completion time, we only found a significant, positive correlation for the 2D 

Desktop setup (0.163, p < 0.05) and thus reject H3c.  
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5.3.5 Tradeoff in speed versus accuracy  

Next, we wanted to understand whether there was a gain in accuracy when spending 

more time on a task in the Ramp-Up phase (see RQ5). Here, the results vary greatly 

per setup. For 2D Desktop, we found no significant Pearson correlation between 

completion time and any accuracy measures. For VR Tabletop, we only found a 

significant negative Pearson correlation between position accuracy, expressed as 

centroid distance (r = -0.18, p = 0.01). If controlled for instructions the subject 

received at the onset of the task (focus on speed vs. on accuracy), however, it becomes 

evident this correlation is only significant for speed tasks (r = -0.2, p = 0.05), not for 

accuracy tasks. Finally, for VR Standup, we identified a significant negative Pearson 

correlation for both position (r = -0.33, p = 0.0) and rotation accuracy (r = -0.22, p = 

0.001), regardless of instructions. Given these results and the evident differences 

between the setups, we reject H5.  

Note that these results are surprising as we typically see an alignment between the VR 

setups; however, they diverge substantially here. A possible explanation could be the 

larger degree of freedom for movement afforded by the VR Standup, where subjects 

could walk around the kidney, crouch below it if needed, and spend more time on 

finding a workable angle. Naturally, this setup also required the most space.  
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Figure 29. Position accuracy vs. completion time dependent on instructions. The blue 
circles and blue crosses mark the average completion time and position accuracy for 
speed and accuracy prompts, respectively.  

We then performed a test to see whether subjects followed the prompts given to them 

when starting a new task. Figure 29 shows position accuracy by completion time. For 

VR Tabletop and VR Standup, we see a tendency for longer completion times for tasks 

with accuracy prompts. The same pattern is evident in the boxplots in Figure 27B and 

Figure 27C that follow an up-and-down pattern, depending on whether the task 

number is odd (speed) or even (accuracy). However, none of these differences in 

completion time and position accuracy for the two prompts are significant, and the 

pattern is even less present for 2D Desktop users.  

5.3.6 Satisfaction 

Finally, to address RQ6, we analyzed and graphed subjects’ self-reported satisfaction 

using the post-questionnaire data (see Figure 30). 
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Figure 30. Grouped bar graph of overall user satisfaction. 

Subjects used a five-point Likert scale with one (not satisfied at all) to three (neutral) 

to five (very much satisfied). With a mean of 3.6 across all setups, the satisfaction was 

on the positive side. We then performed a pairwise Kruskal-Wallis test (with adjusted 

significance level for alpha inflation correction). The Kruskal-Wallis test is a non-

parametric test that allows to check whether more than two non-normally distributed 

samples are drawn from the same distribution—i.e., it assesses whether data samples 

differ significantly from each other (137). This yielded a significantly lower satisfaction 

for 2D Desktop users (mean = 2.79) compared to those in VR Tabletop (mean = 4) and 

VR Standup (mean = 3.93). The result of the VR setups does not differ significantly 

from each other. We thus accept both H6a and H6b. We found no correlations 

between satisfaction and prior experience with 3D software, first-person shooters, or 

VR.  
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5.3.7 Prior exposure to VR and 3D applications 

Across the 42 subjects, there were only minor differences in previous experiences with 

3D or VR applications. 24 subjects had used a VR headset before; 34 subjects had 

played video games in the past 12 months, 28 of whom had played first-person 

shooters (FPS). Further, 22 subjects had used 3D modeling software before. The 

largest differences appeared in previous exposure to VR between VR Standup and VR 

Tabletop (6 subjects vs. 10 subjects, respectively), but these did not result in a 

significant difference in performance. After running a comparison test, we found no 

differences in the distributions of completion time and accuracy measures grouping by 

sex, color blindness, vision impairment, age group, and right-/left-handedness. 

Additionally, we found no correlations of demographic variables, prior exposure to VR, 

or 3D applications with performance variables. 

5.4 Discussion 

This paper reported the results of a user study with 42 subjects involving 14 

increasingly complex and 30 identical tissue block registration tasks across the 2D 

Desktop, VR Tabletop, and VR Standup setups. Our findings focused on comparing 

three different setups for the RUI in terms of accuracy (position, rotation), 

completion time, and satisfaction.  

Contrary to our expectations, many of our predictions were not confirmed in the 

study. We expected the VR Tabletop and VR Standup subjects to outperform 2D 

Desktop users in all of these metrics; however, we only found this to be true for 

rotation accuracy (H1b), completion time (H1c), and satisfaction (H6a), but not for 

position accuracy (H1a). From our analysis (see Sections 5.3.2 and 5.3.3), we conclude 
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that the VR users are about three times as fast as Desktop users and about a third 

more accurate in terms of rotation for a sequence of 30 identical tasks, but similarly 

accurate for position when normalized for the kidney height. 

We argue that several factors contributed to the high position accuracy recorded for 

2D Desktop subjects:  

Restriction to two axes: 2D Desktop users only moved the tissue block in two 

dimensions at a time, and the main camera was always aligned to either the x- or the 

z-axis. We modeled this functionality after the “quad view,” which is common in 3D 

modeling software. It allows the user to see a 3D object from three orthographic 

perspectives with an additional window showing a 3D view, facilitating more precise 

3D alignment. This restriction for 2D Desktop users might have played a role in their 

high position accuracy. In prior work, the lack of such restrictions for 3D 

manipulation has been shown to be a source of frustration for novice users (168). 

Similarly, Masliah and Milgram (135) showed that even with advanced input devices, 

users separate translational (i.e., position) and rotation control when performing 

virtual docking tasks.  

Precision of the mouse: The mouse proved to be a superior tool for performing fine 

adjustments, and the hand-eye coordination required to align the blocks seemed 

achievable for most subjects.  

Separate manipulation of position and rotation: While position and rotation 

adjustments were performed by different tools in 2D Desktop (mouse and rotation 

sliders, respectively), VR Tabletop and VR Standup users performed both 
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simultaneously (with their VR controllers). It is perfectly possible that many VR users 

achieved high position accuracy early on but worsened their result by subsequently 

adjusting the rotation of the tissue block. 

Our analysis of position accuracy yielded an important insight for the continued 

development of the RUI. As explained in Section 5.3.2 and Figure 26, we observed an 

error in 2D Desktop tissue block placements, suggesting a tendency of users to place 

the tissue blocks according to the camera view (i.e., side or front) utilized at the time. 

A potential solution for this recurring error would be to implement more than two 

predefined camera views, thus giving the user multiple perspectives from which to 

view the reference organ.  

This high position accuracy, however, was somewhat offset by the significant 

difference in rotation accuracy and completion time between the VR setups and the 2D 

Desktop setup. Yet, despite this inferiority, the 2D Desktop implementation meets the 

requirements outlined in Section 5.1.2. The tasks of the Plateau phase most closely 

resemble a real-world usage scenario, where multiple registrations are being 

performed in succession. With a median position accuracy of 1.3 mm given the 

kidney height on the laptop display, 2D Desktop users got close to the goal of one 

mm for position accuracy. Similarly, at a median of 5.89 degrees, the goal of rotation 

accuracy by 15 degrees is well met. Further, at 22.6 seconds, the median task 

completion time plateau for Desktop users was within an acceptable range. In a real-

world context, where the accuracy requirement is not as pronounced as it was in this 

study, we can expect that a reasonably accurate registration can be achieved in less 

time. In future studies, the research on accuracy from human tissue registration 
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presented here will serve to support so-called Stage 2 registration at the single-cell 

level using image registration software and machine learning. 

Finally, another goal was to make the RUI experience satisfying. In this regard, the 2D 

Desktop implementation was clearly lacking with a significantly lower self-reported 

satisfaction score than either of the VR setups (H6a), between which we found no 

significant difference (H6b). However, it is important to remember that this study only 

crudely approximates a real-world usage scenario, where the high level of accuracy 

and completion time suggested in this study is likely not necessary, resulting in less 

pressure on the user to keep adjusting their tissue blocks. This is corroborated by the 

fact that more time invested does not result in higher accuracy for the 2D Desktop 

setup (H5), making it more “forgiving” to users who choose to spend less time on 

getting a “perfect” registration. Additionally, the ease of use and wide availability of 

high-resolution 2D screens and computer mice is likely an advantage for users who 

have never experienced VR before. 

Additionally, we can assume that 2D Desktop technology is less likely to cause 

technology frustration as 2D computer monitors, of various resolutions and size, and 

mice are widely available, easy to service, and use. As VR equipment becomes cheaper, 

less bulky, and easier to set up, VR setups may catch up, but at the time of this 

writing, 2D Desktop setups hold a clear advantage in this regard.  

5.5 Conclusions 

The insights gained in this study inform the continued development of the RUI 

Desktop setup as part of the HuBMAP Ingest Portal, see the recently released RUI 1.5 

(65). The revised RUI is optimized for Google Chrome, Firefox, and the latest 
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(Chromium-based) version of Edge. By February 2021, 45 tissue blocks have been 

registered with the RUI (15 for left kidney, 11 for right kidney, 15 for spleen, and 4 for 

colon). The average size for the 26 kidney blocks is: 22.7 mm x 16.7 mm x 5 mm (H x 

W x D) for the left kidney, and 23.7 mm x 11.7 mm x 6.7 mm for the right kidney.  

Going forward, we envision two types of user studies exploring 3D manipulation 

further.  

First, we plan to run studies in a more “in the wild” setting (144). This would allow us 

to consider variables that are hard to test in a lab setting with mostly novice users, 

and result in more accurate data about user performance and satisfaction in a true 

production setting. This would likely be a more focused study with a smaller sample of 

subject matter experts at their place of work (i.e., a wet lab or adjacent data 

processing facility), and would enable us to evaluate the performance of the 2D 

Desktop RUI in a realistic usage scenario.  

Second, it would be valuable to test how interventions could help users improve their 

performance during the experiment (e.g., between the Ramp-Up and Plateau phases). 

Specifically, we aim to run a study with a “reflective” phase where the user sees a 

visualization of their own performance data from previous tasks before completing a 

second set of tasks. Our goal is to use the human ability to recognize patterns and 

trends visually to test if different types of interactive data visualizations can help users 

formulate strategies to improve their performance in terms of position accuracy, 

rotation accuracy, and completion time. Given the detailed telemetry data collected 

from RUI users (especially those in VR), a natural next step would be to add an 

intervention where users can see their own movement as well as the position and 
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rotation of the tissue and target blocks over time, thus enabling them to detect 

problems and strategize more efficient solutions for future tasks. 
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6. User Study 2: Using VR Data Visualizations to Improve Time, Accuracy, 

Satisfaction in 2D Desktop vs. VR RUI 

6.1 Introduction 

Due to decreasing cost and an increasing amount of hardware choice, VR has become 

a popular entertainment tool. Devices like the Valve Index 

(https://store.steampowered.com/valveindex) and the Oculus Rift S 

(https://www.oculus.com/rift-s/) offer a wide variety of content that can run 

independently of the platform they were purchased on: movies, video applications, 

virtual desktops, and an ever larger number of video games. More recent devices such 

as the Oculus Quest 2 (https://www.oculus.com/quest-2/) offer VR at even lower 

prices and without the need for a strong PC or laptop for rendering. Software 

development kits (SDKs), among them OpenVR (204) and SteamVR (205), allow 

developers to produce, test, and deploy content to a wide variety of VR devices in a 

vendor-agnostic and unified pipeline using game engines like Unity (200) or Unreal 

Engine (85). Further, there is an increasing market for coaching and training new and 

old employees for retail, maintenance, and administrative jobs.  

Depending on the hardware and the needs of the application, users of VR equipment 

generate position and rotation data at a rate of up to 120 Hz, and every button press 

can be logged and associated with a time stamp via telemetry. In addition to these 

physical variables, additional data can be derived via computation at runtime or in 

later analysis, allowing designers and researchers to measure a user’s performance 

and behavior when completing tasks such as arranging objects or navigating spaces. 

The novelty of VR, while demonstrably exciting and invoking a feeling of presence in 

users (23), brings with it challenges due to its unfamiliarity to many users. With the 

https://store.steampowered.com/valveindex
https://www.oculus.com/rift-s/
https://www.oculus.com/quest-2/


158 

 

basis of training being repetition and improvement over time, methods to assess and 

improve one’s performance are necessary. The visual primacy of VR, along with the 

ready availability of user data, makes data visualization a good tool to allow users to 

gain insights into their own data.  

In this and the following chapters, we describe two user studies where we developed 

interventions to improve VR performance for manipulation (RUI VR, see chapter 6) and 

navigation tasks (Luddy VR, see chapter 7). These VR visualizations were developed 

using the DVL-FW (31, 32, 35), a theoretical toolset to interpret, construct, and teach 

data visualizations. The DVL-FW comes with a series of seven typologies to categorize, 

among others, visualization types (such as graphs and maps), visual encodings via 

graphic symbols (such as points, lines, volumes) and graphic variables (such as color 

hue and size), and interactions with data (such as filter as well as link and brush). We 

use the DVL-FW to describe the data visualization interventions with an abstracted 

terminology that expresses both traditional, 2D data visualizations (like bar graphs 

and line graphs) and advanced VR visualizations such as the ones presented here. Of 

special interest is the implementation of four interaction types (filter, navigate, 

animate/replay, link and brush): We enabled the subjects to filter their data by time 

stamp or graphic symbol (RUI VR) and task number (both studies); users could 

navigate freely around their data, which was displayed in its original spatial context on 

a 1:1 scale (RUI VR) and minimized (Luddy VR); it was possible to play back the data 

by time stamp in different speeds via a time slider (RUI VR); and subjects could select 

bars in a bar graph and then apply filters correspondingly to view only specific tasks 

based on their completion time. The goal of these studies was to test whether 

significant differences in performance and satisfaction were measurable between the 
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control and experiment cohorts and to determine the effects between behavior in the 

intervention and performance in the subsequent set of tasks.  

In chapter 6, we describe the research questions, implementation, study design, and 

results of the RUI VR study. Likewise, in chapter 7, we present the subsequent Luddy 

VR study. Finally, in section 7.10, we compare the implementations of the data 

visualization interventions for these studies to determine the cause for our results. We 

conclude with a series of design implications for future data visualization interventions 

to improve performance in VR before ending the chapter with an overview of 

limitations and next steps.  

This research was conducted in unison with a user study about differences in 

performance and satisfaction between three implementations of the same interface 

(43). In this initial study, 42 participants, split across three setups, performed 14 

increasingly difficult and then 30 identical 3D matching tasks either using a VR HMD 

while standing or sitting, or with a traditional 2D screen on a laptop. In this user 

study, we added a second cohort of 42 subjects (for a total of 84) while introducing an 

intervention between the Ramp-Up (increasing difficulty) and Plateau phases (identical 

difficulty). During this “Reflective phase”, the participants could first learn the controls 

and familiarize themselves with a visualization of the best-performing subject from the 

control cohort in the same setup (2D Desktop, VR Tabletop, VR Standup) and then 

explore their own data with the goal of enabling them to turn their insights into action.  
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Figure 31. Study procedures for control (top, corresponds to original RUI study) and 
experiment cohort (bottom).  

Upon arriving at the research site, the participants answered a pre-questionnaire to 

collect demographic data alongside information about their prior exposure to virtual 

reality, video games, and 3D applications in general (such as 3D modeling software). 

Additionally, their answered questions about whether they were left- or right-handed 

and if they suffered from any vision impairments (such as near-/far-sightedness or 

color-blindness).   

Subsequently, the subjects completed the first part of the experiment proper, 

consisting of a tutorial task, followed by the first 14 tasks (Ramp-Up phase). Following 

that, the study procedure for both cohorts started to differ: The control cohort went on 

to the second set of tasks (30 identical ones, called “Plateau” phase). The experiment 

cohort, meanwhile, performed the Reflective phase.  

6.2 Research questions and hypotheses 

RQ1: When presented with a VR visualization of their own movement data from the 

Ramp-Up phase during their Reflective phase, do users in the experiment cohort 

have a better performance in the following Plateau phase, measured in accuracy and 

completion time, compared to the control cohort who does the Plateau phase without 

a Reflective phase?  
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H1: There will be a significant difference in completion time and accuracy for Ramp-

up and Plateau phases between control (without Reflective phase) and experiment 

group (with Reflective phase). However, this will only occur for the VR Standup and VR 

Tabletop setups; the 2D Desktop users will not be able to gain significant gains in 

accuracy and completion time over their peers. 

RQ2: Between-subject and within-condition, across cohorts, are there significantly 

different usage patterns between the experiment and control cohort during the Plateau 

phase? 

H2: Users in the experiment group that previously spread out across a larger area in 

the Ramp-Up phase will use less space and concentrate on an overall smaller work 

area in the Plateau phase. They will also use less space in the Plateau phase on 

average than the control group. 

RQ3: In the Reflective phase, how do users apply the interactive tools?   

H3a: Most users will use the time slider to scroll through around 1000% (=10 times) 

the time span of their dataset.  

H3b: The most selected location for the play head of the slider will be towards the very 

end of the timecode in the dataset.  

H3c: Users will spend the majority of time with the kidney turned on as the presence 

of a reference organ is highly useful to understand the data overlay. The kidney is 

turned on by default.  
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RQ4: Within the experiment group, in the Reflective phase, are metrics on user 

actions and interactive tool usage, measured through telemetry, correlated with higher 

performance in the Plateau phase? 

H4a: More distance traveled has a negative effect completion times in the Plateau 

phase. 

H4b: More distance traveled has a negative effect on distance (higher position 

accuracy) in the Plateau phase. 

H4c: More head rotations have a negative effect on completion times in the Plateau 

phase.  

H4d: More head rotations have a negative effect on distance (higher position accuracy) 

in the Plateau phase. This may be due to high-performing users feeling more 

comfortable in 3D environments in general, and VR specifically, enabling them to 

move around their own data more fluently in the first place. 

RQ5: In the mid-questionnaire between the intro and main part of the Reflective 

phase, what is the relationship between the task score for this questionnaire and the 

performance in the Plateau phase for 2D Desktop users? 

H5a: There is a significant negative correlation between task score in the mid-

questionnaire and position accuracy in the Plateau phase in terms of distance. 

H5b: There is a significant correlation between task score in the mid-questionnaire 

and position accuracy in the Plateau phase in terms of error and bias. 
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H5c: There is a significant negative correlation between task score in the mid-

questionnaire and rotation accuracy in the Plateau phase. 

H5d: There is no significant negative correlation between task score in the mid-

questionnaire and completion time in the Plateau phase. 

H5e: The majority of users agree or strongly agree that the subject shown to them in 

the Reflective phase was highly fast and accurate. 

6.3 Study design 

In order to allow the users in the experiment cohort to inspect their own data from the 

Ramp-Up phase, we created a separate Unity application with the same base map, i.e., 

kidney and buzzer, as the Ramp-Up phase (for users in the VR Tabletop and VR 

Standup setups). 2D Desktop users were presented with a line graph visualization of 

the distance and angular difference between the tissue and target blocks. In this 

section, we outline what implementations of the Reflective phase looked like for each 

setup, the visual encoding, the interactivity, and the mid-questionnaire that concluded 

the Reflective phase before subjects continued with the Plateau phase. The Reflective 

phase consisted of two parts: an intro and a main part. In the intro, the user was 

shown a visualization of the best-performing subject in the control cohort of their 

setup in terms of completion times and position as well as rotation accuracy. A ~6 

minutes tutorial (~3 minutes for 2D Desktop) introduced the goal of the Reflective 

phase, the visual encoding, the interactivity (for VR subjects), and prompted the user 

to derive strategies for faster and more accurate placement going forward. Following 

the intro, we presented the user with a mid-questionnaire (see section 6.3.4). 

Subsequently, the user was shown their own data in the main part of the Reflective 
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phase. While we measured the time spent in the Reflective phase by the user, we did 

not impose a minimum or maximum time limit on the user.  

6.3.1 Reflective phase across setups 

In this section, we outline the Reflective phase implementation for all three setups. 

Note that for each subject, we omitted the data from the tutorial task (Task #0). 

2D Desktop 

 

Figure 32. Line graph of distance between tissue and target block (orange) and angular 
difference (green) for the best user in the control cohort for 2D Desktop. 

2D Desktop users were shown the line graph in Figure 32. On the x-axis, we plotted 

the elapsed time in seconds as well as task numbers; on the y-axis, we added two 

scales: distance between the two blocks (left side, measured in Unity scene units) and 

the angular difference (right side). Additionally, we inserted vertical dot-dash lines to 

indicate the end of one task and the beginning of the next one. This static visualization 

was created using R and Shiny after loading the CSV files with data from the subject’s 

Ramp-Up phase.    
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VR Tabletop 

In the VR setups, we used the inherently spatial reference system of the virtual 

environment to produce 3D dot density maps, encoding the headset, hand, and tissue 

block positions over time. Figure 33 shows the Reflective phase setup for a user in the 

VR Tabletop setup. They were seated at the same virtual and physical tables as they 

were during the Ramp-Up phase, ensuring a 1:1 mapping. They were allowed to move 

around during the Reflective phase and inspect their data form multiple angles.  

 

Figure 33. Reflective phase setup for VR Tabletop. A: side view. B: top view. 

Figure 34 shows top and side views for three users with distinct movement patterns. A 

difference is noticeable, for example, in the movement of the left hand (yellow dots). In 

Figure 34, user A occupies a relatively small area compared to user C, with user B 

being somewhat in the middle. Similarly, user A has a higher vertical spread of dots 

with less density (bottom view), while users B and C cover less height. Contrast this, 

one the other hand, with the movement pattern of the best-performing user from the 

control cohort in the VR Tabletop setup, whose data we see in Figure 33. This user 

works in a highly compressed area, avoiding to cover large distances or lingering 

outside their small work area any longer than absolutely needed. They also minimized 
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the movement of their left hand, as becomes apparent from the small spread of yellow 

dots.  

 

Figure 34. Top view visualizations for three subjects with various spatial usage patterns 
(Tabletop). A: concentrated work on one axis. Middle: plenty of back-and-forth along the 
z-axis. Right: wide spread around the z and x-axis. 

VR Standup 

Similar to subjects in the VR Tabletop setup, VR Standup users explored first the data 

of the best-performing users from the control cohort and then their own. Figure 35 

contains side (A), top (B), and back view (C, with some transparency added for clarity).   
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Figure 35. A: side view of Reflective phase (VR Standup) scene with data overlay of best-
performing user in control cohort. B: top view, same dataset (transparency was added to 
the user to avoid occlusion). 

Figure 36 shows the data for three distinct users. User A moved their head (blue) 

predominantly along one axis, minimized movement with the left hand (yellow), and 

kept the area they cover as small as possible. User B, on the other hand, moved back 

and forth along the z-axis (between the target block and the tissue block) frequently 

and at great speed, visible from the many blue dots distributed along that axis. 

However, they mostly stayed on one side of the z-axis. User C, however, not only 

moved back and forth frequently, they also switched from one side of the axis to the 

other multiple times.  
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Figure 36. Top view visualizations for three subjects with various spatial usage patterns 
(Standup). Left: concentrated work on one axis (see headset). Middle: plenty of back-
and-forth along the z-axis. Right: wide spread around the z and x-axis. 

Just like in the VR Tabletop setup, users in the VR Standup setup were allowed to 

explore the 3D dot density map freely by walking around the space while using the 

kidney and buzzer as a base map.  

6.3.2 Visual encoding 

Like the Reflective phase implementations for the three setups, the visual encodings 

applied to each setup differed as well. In this section, we describe the graphic symbol 

and graphic variable pairings (31) used to encode the telemetry and task performance 

data from the Ramp-Up phase.   
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2D Desktop 

In the 2D Desktop setup, the graphic symbol line encoded two data records: position 

accuracy, expressed as the distance between the tissue block and the target block over 

time, and the angular difference, i.e., the difference in rotation between the two blocks, 

expressed as a single value from 0 (same rotation) to 180 (diametrically opposed 

rotation). The graphic variables x-y position and color hue encode position and 

rotation accuracy, respectively. Additionally, various linguistic and pictorial symbols 

provide additional information to the user: axes are properly labeled; a note at the 

bottom of the graph indicates the height of the kidney so that reading the position 

accuracy values becomes easier; vertical dot-dash lines mark the beginning of a task 

and the start of the next; white gridlines help with reading values off the y-axes. As a 

temporal visualization, the x-axis contains the elapsed time in minutes and seconds 

(since the end of the tutorial task). 

VR Tabletop and VR Standup 

For the two VR setups, we used a straightforward visual encoding scheme for the 

user’s HMD and controllers: blue for the HMD, pink for the right controller, yellow for 

the left controller, white to orange for the tissue block over time, see Figure 37.  
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Figure 37. Data overlay for the VR setups separated by color. A: HMD. B: tissue block. C: 
right controller. D: left controller. 

The graphic symbol volume, together with the graphic variable color saturation, 

encodes the angular difference between the tissue block and the target block and was 

indicated to the user in a legend, see Figure 38. For all graphic symbols, the graphic 

variable x, y, z-position encoded the x, y, z-position if the corresponding device (HMD, 

controllers) or virtual object at a given moment in time.  
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Figure 38. Distribution of tissue block locations over time, with angular difference 
between the tissue and target block encoded with a sequential color scheme. 

The resulting visual encoding allowed users to quickly identify areas of concentrated 

activity. Frequently visited areas of space were thus indicated by a higher density of 

dots. Every user, by nature of the experiment, produced such a hot spot around the 

“Next Task” buzzer (see Figure 39).  
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Figure 39. The user's repeated pressing of the virtual red buzzer produces a hot spot. 

6.3.3 Interactivity 

The aforementioned areas of concentrated activity were visualized in an aggregate view 

that the user encountered when they first entered the stage. By default, all data was 

shown; as a consequence, patterns in the movements were easier to spot, but the large 

number of dots generated by the user over the course of the Ramp-Up phase also led 

to visual clutter (see Figure 40). To allow the user to remove various layers of data 

through filtering of their choice, we implemented two interactions: filter and animate.  

 

Figure 40. Distribution of tissue blocks around the target cube (labeled) with graphic 
symbols for right hand and kidney visible (A) and invisible (B). 

The area around the target block position shown in Figure 40A tended to amass a 

large amount of data records due to frequent user activity when fine tissue block 

placement was performed. A mix of pink dots and white-orange cubes visualized the 

user’s right hand placing the tissue block while minimizing the angular difference. By 

using their controller, the user could remove parts of the base map (the kidney) as well 

as parts of the data overlay by a series of features: graphic symbol type, time stamp, 
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and task number. In Figure 40B, for instance, the user has removed the graphic 

symbol for the right hand (pink dots) to declutter the display around the target.  

 

Figure 41. Filter menu to turn parts of the data overlay on and off by task number or 
graphic symbol type. 

Figure 41 is a screenshot of the interactive legend presented to the user on top of their 

right controller. It consisted of three sections: graphic symbols, tasks, and a static 

legend for the angular difference. The graphic symbols part allowed the user to turn 

parts of the data overlay on and off by entire types of data records encoded by these 

symbols. Checkboxes enabled the user to filter by graphic symbol type and task 

number.  
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Similarly, Figure 37 above shows an entire dataset separated by graphic symbol type. 

Figure 42 below, on the other hand, shows the dataset in chunks: tasks 1-5 (A), tasks 

10-11 (B), and only task 14 (C). For both of these filters, we added “Show All” and 

“Hide All” buttons for the user’s convenience.  

 

Figure 42. VR Standup user with three different stages shown. A: Tasks 1-5. B: Tasks 
10-11. C: Only task 14.  

Lastly, we allowed the user to show and hide data records by time stamp. Specifically, 

we implemented a time slider on top of the user’s left controller (see Figure 43).  
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Figure 43. Time slider to skip forward and backward in time by using via the thumbpad 
on the VR controller. 

The time slider consisted of a slider area with a play head, similar to what one would 

find in a video editing program. The user could move the play head along the slider by 

putting their thumb onto the trackpad on the left controller (see Figure 44).  
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Figure 44. Close-up of the left controller with play head speed zones. 

Placing the thumb onto the right and left half of the trackpad let the user skip forward 

and backwards through the dataset by time stamp, respectively. This allowed the user 

to replay the dataset at various speeds depending on their horizontal distance from the 

center of the touchpad. Additionally, they could activate a fast-forward and fast-

backward mode when additionally pressing the trigger button on the back of the 

controller. To indicate to the user the current speed at which they were skipping 

through the dataset, green or red arrows were displayed next to the current time 

stamp (in minutes and seconds since the beginning of task 1). In parallel, 3D green 

and red blocks were displayed over the touchpad in the user’s virtual view (see Figure 

43).  
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Figure 45. Abstract image of the event listener for each graphic symbol. A series of 
Boolean values is passed into the CheckFlags() function, for example, whether the 
currently shown time stamp is later than the associated time stamp of the graphic 
symbol. If all arguments evaluated to true, the graphic symbol was displayed.  

The combination of task, graphic symbol, and time stamp filter formed an interactive 

system that let the user quickly isolate individual tasks, replay tasks, as well as isolate 

specific elements of the scene (such as the tissue block), and enabled them to switch 

between aggregate and focused views in a way that felt natural and immersive. When 

implementing this interactive system, we used the native C# event system to broadcast 

any changes to the UI elements to the graphic symbols in the scene. The graphic 

symbols had behaviors attached to them that then evaluated whether all conditions 

were met for them to be shown or hidden (see Figure 45). Event systems are highly 

useful when implementing 3D scenes with many interoperating actors (as is common 

in video games), and their presence and easy availability in Unity and C# was helpful 

in making our application responsive, fluid, and interactive.   
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6.3.4 Mid-Questionnaire 

The 2D Desktop setup was not interactive and we thus collected no data about the 

interaction between the user and the visualization. Instead, we analyzed the user’s 

understanding of the line graph visualization we presented them with through a series 

of questions. Specifically, we asked them about the visual encoding before prompting 

them to identify maxima of distance and angular difference in the line graph presented 

to them. At this point, the line graph contained data from the best-performing user 

from the control cohort of the experiment. Subsequently, we gave the users more 

retrieval tasks, e.g., to identify the task with shortest and longest completion times.  

For the VR setups, we included one question about the visual encoding of the tissue 

blocks in the Reflective phase, giving the subjects three options: distance between the 

tissue and target block, angular difference between the two (correct answer), and 

completion time. 

6.4 Metrics 

To assess completion time, position accuracy, rotation accuracy, and satisfaction, we 

used the same metrics as in our RUI user study (43). In this section, we elaborate on 

how we assessed space usage for the Ramp-Up and Plateau phases.  

Utilizing telemetry data, we wanted to determine if the space usage patterns of users 

for the control and experiment cohorts during the Plateau phase were significantly 

different. For this step, we isolated the Plateau phase data for all subjects and then 

compared between the cohorts. We limited this analysis to subjects in the VR Tabletop 

and VR Standup setups.  
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For example, we may find that experiment subjects traveled a significantly shorter 

overall distance in the Plateau phase after seeing their spread in the Reflective phase. 

Similarly, they could have discovered that they were covering too wide an area and 

went on to work more alongside a simple line in the Plateau phase. Exemplary space 

usage patterns of three control cohort subjects in the Ramp-Up phase are shown in 

Figure 46. The visualizations in this section were made using Kepler.gl (198).  

 

Figure 46. Overhead view (x-z plane) of three participants (A, B, C) with unique 
movement patterns during the Ramp-Up phase. 

As apparent in Figure 46 above, different users display different spatial usage 

patterns. User works mostly along one well-defined axis in close proximity to the 

target, starting farther on the left side and working their way towards the target as the 

start distance between tissue and target block becomes larger, reaching the tissue 
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block by extending their arms. User B, on the other hand, rather than staying close to 

the target, moves backwards along the z-axis (running between the target and tissue 

block), thus covering a much wider area with their movements. These movement 

happened with some regularity in that the user would walk back along the z-axis, turn 

around, grab the tissue block, and then walk back toward the target block. Finally, 

user C shows little distinguishable patterns. Notably, as opposed to users A and B, 

they spent more time on the right side of the axis between the target and tissue blocks 

overall.  
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Figure 47. Overhead view (x-z plane) of three participants (A, B, C) with unique 
movement patterns during the Plateau phase. 

The differences in spatial usage patterns become even more apparent for the Plateau 

phase in Figure 47. During the Plateau phase, these control subjects showed distinct 

movements. User A, like in the Ramp-Up phase (see Figure 46), limits themselves to a 

small area close to the target, relying on their arms to reach the tissue block. Users B 

and C, on the other hand, cover wider areas, frequently positioning themselves 

“behind” the tissue block when it appears to “carry” it forward into the target. 

Similarly, for user A, it becomes apparent how they perform all the rotation 

adjustment very close to the kidney, hence the many white dots just around the 

target. Users B and C, on the other hand, perform much rotational adjustment before 

reaching the target.   

Figure 48 shows three more users; one of them (user D) was the best-performing 

subject in that cohort and setup by completion time and accuracy. User D shows a 

distinct movement profile. Taking up lots of space but also moving frequently with few 

clusters during the Ramp-Up phase, they go around the kidney for the harder tasks. 

This becomes even more apparent in the Plateau phase, where they spend the majority 

“beyond” the kidney. This allowed them to have a clear view of the handles indicating 

the rotation of the target they had to match with their tissue block. In stark contrast, 

users E and F seemed almost timid in that they limited themselves to staying in front 

of the kidney at all times, both during the Ramp-Up and the Plateau phases. The 

different in movement becomes even more apparent during the Plateau phase, where 

they stay mostly in one spot and execute what appears to be swinging motions with 

their arms in order to place the tissue block.  
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Figure 48. Three more users from the VR Standup control cohort (D, E, F). User D was 
the best-performing user by completion time and accuracy for that cohort. 

To describe the spatial usage by the VR Tabletop and VR Standup users, and to 

answer RQ2, we analyzed the telemetry presented so far using three metrics.  

First, the convex hull yielded the contour of all the recorded headset or controller 

locations in the experiment. Calculating the area of the convex hull allowed us to 
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quickly compare the extent to which different subjects occupied the physical space 

around them.  

Second, the number of clusters in a user’s telemetry data enabled us to compare 

whether subjects tended to spend a lot of time within a confined area or whether they 

tended to spread out into the space. If the number of clusters was low, we could 

assume that the subject mostly worked in a fixed location, while a larger number of 

clusters could hint at more agile subjects.  

Third, we developed a metric specifically for the analysis of this dataset is what we 

refer to as the angle of attack, see Figure 49 below. 
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Figure 49. The angle of attack for two exemplary data points P1, P2 for one user’s head. 
The blue line is the imaginary line from the target to the start positions of the tissue 
block (parallel to the global z-axis). We can compute angles ∠Z1TP1, ∠Z2TP2, ∠ZnTPn from 
the (x, z) positions of any point Pn. 

In the background of Figure 49, we see a bird’s eye view of a user’s headset position 

during the Ramp-Up phase in the control cohort (darkened, light blue dots). The 

white-orange hexagons (also darkened) are aggregate hexbins of tissue block positions 

over time. In the foreground, two exemplary right triangles are shown that share the 

unchanging location of the target cube as a corner T. Likewise, we can draw right 

triangles ZnTPn for any of the n headset locations. The hypotenuse is formed by TPn, 

with TZn and the adjacent and ZnPn as the opposite. The adjacent lies on the “work 

axis”, i.e., the line on which the tissue block is shifted backwards algorithmically as 

task complexity is increased. The work axis is parallel to the global z-axis. The angle 

ZnTPn is different for any headset location P. We call this angle the “angle of attack” 

that informs us about the distance at which the user works along the work axis. In the 

example above, P1 generates a higher angle of attack than P2. By calculating the mean 

of all angles of attack for a given user, we can create a single metric to compare how 

close individual users were to the main work axis. If we calculate the angle of attack 

for all recorded headset positions, we can compare between users in identical setups 

and across cohorts in terms of how far or how close they were to the work axes 

throughout the study. 
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Figure 50. Profiles for three subjects with illustrative convex hull and angle of attack 
overlay. 

Taken together, we can then use the three metrics described above to describe a user’s 

behavior with few numbers. Figure 50 illustrates the average angle of attack, the 

convex hull, and the number of clusters for user A, D, and C from Figure 47 and 

Figure 48, demonstrating widely different approaches to the Plateau phase tasks. Both 

users A and C covers a much smaller area than user D; however, user A has a much 

smaller average angle of attack than user C. User D, on the other hand, travels around 

the kidney (which is also mirrored by the many hexbins in that area) and also shows a 

much large angle of attack.  

6.5 Results 

To answer the research questions described in Section 6.2, we treated users in this 

study as the experiment cohort and the users from our RUI user study was the control 
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group. As shown in Figure 31, both cohorts received identical treatments, the only 

difference being the presence of the Reflective phase for the experiment cohort.  

6.5.1 Influence of Reflective phase on performance and satisfaction 
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Figure 51. Mean completion time and position/rotation accuracy for Plateau tasks in all 
setups for both cohorts. 

We found no difference between the cohorts for completion time, position, and 

rotation accuracy for the two VR setups. However, in the experiment group of the 2D 

Desktop setup, we found a highly significant higher rotation accuracy (Mann-

Whitney-U-Test, p = 0.031) as well as a slightly significant difference in position 

accuracy (Mann-Whitney-U-Test, p = 0.085). This means that the Reflective phase (line 

graph) for the 2D Desktop users did indeed help users outperform the Desktop users 

in the control cohort. However, we found no difference in terms of completion time for 

2D Desktop. Based on these findings, we have to reject H1.  

Surprised by these findings, we performed further analyses for the users’ self-reported 

satisfaction, and found a significantly higher feeling of satisfaction in the 

experiment group of the 2D Desktop setup (Mann-Whitney-U-Test, p = 0.04) and in 

VR Standup (Mann-Whitney-U-Test, p = 0.016). In Section 6.5.4, we examine the user 

behavior in the Reflective phase of the VR Standup setup to determine what factors 

may have contributed to this higher level of satisfaction with one’s performance.  

6.5.2 Change in space usage 

All the space usage metrics did not differ significantly for the Ramp-Up phase of the 

control and the experiment group. The results of comparing the Plateau phases of the 

experiment and the control group are as follows (oriented towards a significance to the 

5%-level).  
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Figure 52. Spatial usage between cohorts for VR Tabletop and VR Standup. 

We found no difference between the control and experiment cohorts for the head, 

right hand, left cluster numbers, convex hull (left hand), and average angle of 

attack for neither VR Standup nor VR Tabletop. However, it becomes apparent from 

Figure 52 that there is much greater variance for the experiment cohorts in VR 
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Tabletop in terms of the number of clusters of the right hand and in terms of average 

angle of attack in VR Standup.  

However, for the convex hull (head) and convex hull (right hand), we found 

significant differences for the VR Standup setup (Welch-Test). Specifically, subjects 

in the experiment cohort formed a larger convex hull with their head and right-hand 

movements than control cohort users. Presumably, these users, due to spending more 

time in VR and thus becoming more familiar with virtual space, performed their 

Plateau tasks with more spatial confidence. Many users who may have been timid at 

first gained courage. However, we detected neither of these differences for the VR 

Tabletop setup, where the user’s movement was more restricted. We thus have to 

reject H2. 

Further, we aimed to find out whether a change in space usage behavior (relative to 

the Ramp-Up phase) has an effect on performance in the Plateau phase. We thus 

calculated a Pearson correlation matrix for the change of space usage variables in 

comparison to the Ramp-Up phase (“delta_”, see Figure 53).   
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Figure 53. Pearson correlation matrix between the change in usage variables ("delta_") 
and performance metrics as well as self-reported satisfaction. Only significant 
correlations are shown; insignificant ones are left blank.  

For the VR Standup setup, we see that a change in space usage does not change the 

Plateau performance in most cases. Only an increased convex hull (left hand) is 

correlated with a higher rotation accuracy. This might be an indicator that subjects 

who kept their left hand less steady and adopted a more natural flow might have been 

more able to gauge the quality of their tissue block rotation more, but this connection 

is tenuous at best. Interestingly, an increased number of clusters (left hand) is 

positively correlated with the feeling of satisfaction.  

This came as somewhat of a surprise to us as we expected that subjects who looked 

behind the kidney in the Plateau phase would be more able to see the poles indicating 
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the rotation of the target block and would thus save precious time by identifying a 

suitable vantage point.   

For the VR Tabletop setup, we even found that an increase in the angle of attack, 

i.e., moving their body more in the direction of the kidney, is correlated not only with a 

lower position accuracy but also a lower rotation accuracy.   

To check the robustness of these results in cases of extreme values, we calculated the 

point-biserial correlation of change in the performance parameters and a dummy 

variable of whether users had an increase of the angle of attack of more than 30 

degrees or users that moved behind the kidney, i.e., who had an angle of attack 

greater than 90 degrees. Both show no significant correlation with the performance 

metrics. 

These findings point to the different roles of the angle of attack for these two setups. 

VR Standup users generally had more freedom in their movement through space and 

could choose their angle of attack without any significant influence on their 

performance. For VR Tabletop users, on the other hand, it may have made sense to 

have a setup that forces them to a more acute angle of attack. For example, instead of 

setting the work axis, i.e., the line between the target and the tissue block at task 

start, parallel to the edge of the table, a more angular approach may have prevented 

some users from increasing their angle of attack too much and getting too close to the 

backside of the kidney.  
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6.5.3 Tool usage (descriptive statistics) 

We recorded a variety of metrics from VR subjects in the experiment group during the 

Reflective phase. This phase consisted of two parts: an intro where the user explored 

the best-performing user’s dataset (with an audio tutorial about the interactive tools 

and goals of this phase) and, subsequently, the main part where they explored their 

own data.  

Table 8 gives the number of observations (N), mean, standard deviation (SD), median, 

min, and max value for a series of metrics from the intro as well as the main part of 

the Reflective phase for both VR setups together and separate.  



193 

 

Table 8. Summary statistics of tool usage during Reflective phase.  

Variable Setup N Mean SD 
Media

n 
Min Max 

reflective2_amou
ntKidneyTurnoff 

All 28 
    

1.643 

    

2.483 

    

1.000 

   

0.000 

   

11.000 

VR Tabletop 14 
    

1.643 
    

1.946 
    

1.000 
   

0.000 
    

5.000 

VR Standup 14 
    

1.643 
    

3.003 
    

1.000 
   

0.000 
   

11.000 

reflective2_avg_n
umber_tasks_visi

ble 

All 28 
    

6.215 
    

3.992 
    

5.333 
   

1.238 
   

14.000 

VR Tabletop 14 
    

6.416 

    

3.957 

    

5.643 

   

1.255 

   

14.000 

VR Standup 14 
    

6.014 
    

4.164 
    

5.149 
   

1.238 
   

14.000 

reflective2_avg_ta
sk_visible 

All 28 
    

7.716 
    

1.259 
    

7.485 
   

5.548 
   

11.542 

VR Tabletop 14 
    

8.092 
    

1.194 
    

7.754 
   

6.925 
   

11.542 

VR Standup 14 
    

7.341 

    

1.251 

    

7.157 

   

5.548 

    

9.643 

reflective2_cluster

_no_head 

All 28 
    

3.393 
    

3.119 
    

2.000 
   

2.000 
   

14.000 

VR Tabletop 14 
    

2.500 

    

1.345 

    

2.000 

   

2.000 

    

7.000 

VR Standup 14 
    

4.286 
    

4.084 
    

2.000 
   

2.000 
   

14.000 

reflective2_cluster
_no_left 

All 28 
    

3.250 
    

2.413 
    

2.000 
   

2.000 
   

13.000 

VR Tabletop 14 
    

3.786 
    

3.093 
    

2.500 
   

2.000 
   

13.000 

VR Standup 14 
    

2.714 
    

1.383 
    

2.000 
   

2.000 
    

7.000 

reflective2_cluster
_no_right 

All 28 
    

3.571 

    

3.259 

    

2.000 

   

2.000 

   

15.000 

VR Tabletop 14 
    

3.786 
    

3.167 
    

3.000 
   

2.000 
   

14.000 

VR Standup 14 
    

3.357 
    

3.455 
    

2.000 
   

2.000 
   

15.000 

reflective2_convex

_hull_head 

All 28 
    

0.195 
    

0.260 
    

0.088 
   

0.003 
    

1.001 

VR Tabletop 14 
    

0.048 

    

0.075 

    

0.025 

   

0.003 

    

0.299 

VR Standup 14 
    

0.342 
    

0.296 
    

0.206 
   

0.028 
    

1.001 
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reflective2_convex
_hull_left 

All 28 
    

0.865 
    

1.777 
    

0.353 
   

0.039 
    

9.017 

VR Tabletop 14 
    

0.146 
    

0.100 
    

0.116 
   

0.039 
    

0.368 

VR Standup 14 
    

1.584 

    

2.331 

    

0.760 

   

0.321 

    

9.017 

reflective2_convex
_hull_right 

All 28 
    

0.620 
    

0.591 
    

0.457 
   

0.046 
    

2.330 

VR Tabletop 14 
    

0.180 
    

0.140 
    

0.154 
   

0.046 
    

0.573 

VR Standup 14 
    

1.060 
    

0.536 
    

0.993 
   

0.387 
    

2.330 

reflective2_degree
_headrotationY 

All 28 

 

7760.2
50 

 

5769.7
67 

 

6638.1
96 

3367.
796 

32753.
357 

VR Tabletop 14 

 

7086.0
72 

 

2512.6
90 

 

6978.9
33 

3367.
796 

12462.
243 

VR Standup 14 

 

8434.4
27 

 

7864.3
91 

 

5271.4
06 

3401.
142 

32753.
357 

reflective2_distan

ce_lefthand 

All 28 
   

40.497 
   

18.613 
   

36.125 

  
11.71

2 

   
81.941 

VR Tabletop 14 
   

33.540 

   

15.515 

   

28.106 

  

11.71

2 

   

71.736 

VR Standup 14 
   

47.453 
   

19.355 
   

50.230 

  
18.59

9 

   
81.941 

reflective2_distan
ce_rawslider 

All 28 
    

3.915 
    

2.993 
    

3.301 
   

0.022 
   

12.068 

VR Tabletop 14 
    

5.148 
    

3.619 
    

4.868 
   

0.364 
   

12.068 

VR Standup 14 
    

2.681 
    

1.492 
    

2.871 
   

0.022 
    

5.150 

reflective2_distan
ce_righthand 

All 28 
   

39.860 
   

27.179 
   

34.344 

  
11.24

6 

  
126.75

6 

VR Tabletop 14 
   

29.254 
   

19.971 
   

20.814 

  
11.24

6 

   
74.955 

VR Standup 14 
   

50.466 
   

29.885 
   

45.569 

  
12.53

4 

  
126.75

6 

reflective2_distan

ce_traveled 
All 28 

   

34.421 

   

18.036 

   

28.314 

  
10.08

3 

   

81.413 



195 

 

VR Tabletop 14 
   

26.878 
   

12.494 
   

24.651 

  
10.08

3 

   
57.660 

VR Standup 14 
   

41.964 

   

19.924 

   

38.200 

  

13.63
5 

   

81.413 

reflective2_head_
upDownY 

All 28 
    

8.155 
    

4.563 
    

6.564 
   

2.620 
   

20.754 

VR Tabletop 14 
    

7.145 
    

4.030 
    

6.068 
   

2.620 
   

17.641 

VR Standup 14 
    

9.165 

    

4.981 

    

6.803 

   

3.890 

   

20.754 

reflective2_mean_
rawSlider 

All 28 
    

0.756 
    

0.141 
    

0.728 
   

0.487 
    

0.983 

VR Tabletop 14 
    

0.787 
    

0.138 
    

0.771 
   

0.584 
    

0.979 

VR Standup 14 
    

0.725 
    

0.143 
    

0.683 
   

0.487 
    

0.983 

reflective2_time_t
oggle_filter_usage 

All 28 
    

0.406 

    

0.380 

    

0.326 

   

0.000 

    

0.985 

VR Tabletop 14 
    

0.523 
    

0.412 
    

0.680 
   

0.000 
    

0.985 

VR Standup 14 
    

0.288 
    

0.317 
    

0.187 
   

0.000 
    

0.872 

reflective2_time_
without_kidney 

All 28 
    

0.395 

    

0.376 

    

0.417 

   

0.000 

    

0.962 

VR Tabletop 14 
    

0.469 
    

0.387 
    

0.564 
   

0.000 
    

0.962 

VR Standup 14 
    

0.322 
    

0.364 
    

0.208 
   

0.000 
    

0.903 

reflective2_total_ti
me_spent 

All 28 
  

430.69
6 

  
216.31

1 

  
389.77

1 

 
195.5

29 

 
1284.8

28 

VR Tabletop 14 
  

464.629 
  

149.821 
  

501.839 

 
247.94

9 

  
696.611 

VR Standup 14 
  

396.763 
  

268.800 
  

358.766 

 
195.52

9 

 
1284.82

8 
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Table 9. Definition of variables for user behavior from the Reflective phase. 

Variable Definition 

convex_hull_[INPUT 
DEVICE] 

convex hull of the recorded position coordinates of the 
left hand, right hand and the head during the Reflective 
phase 

cluster_no_[INPUT 
DEVICE] 

number of clusters of position data as a result of k-
means clustering (optimal number of clusters 
determined by silhouette analysis) 

total_time_spent time spent in the reflection phases  

distance_[INPUT DEVICE cumulated movement of left hand, right hand and head 
(in meters)  

degree_headrotationY Cumulated total degrees of head rotation around the y-
axis 

head_upDownY Cumulated total head movement up and down the y-

axis 

mean_rawSlider Average raw slider position ranging from 0 to 1 for each 
subject 

amountKidneyTurnoff Total number of times the kidney visualization was 
turned off 

time_without_kidney Share of reflective time spent with kidney turned off 

time_toggle_filter_usage Share of reflective time spent with other filter toggles 
used 

avg_task_visible Average of task numbers that were visible during 

reflective phase 

avg_number_tasks_visible Average numbers of tasks that were visible at the same 
time 
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All the values reported below have been recorded in the main part of the Reflective 

phase. 

On average, users spent 464.63 seconds (VR Tabletop, SD = 149.82 s) and 396.76 s 

(VR Standup, SD = 268.8 s) in the main part of the Reflective phase. Unsurprisingly, 

VR Tabletop users traveled less with their headsets (26.88 meters, SD = 12.49 m) 

than VR Standup users (41.96 m, SD = 19.92 m). Notice, however, the large range 

114.22 m between the subject with the most right-hand movement and the subject 

with the least (both in the VR Standup setup). Likewise, the subject with the most 

distance traveled for the headset in the VR Standup setup was measured at 81.41 

m (vs. 13.64 m for the least traveled), yielding a range of 67.77 m. 

The bigger freedom of movement probably also to VR Standup users rotating their 

heads more, with 8434.43 degrees vs. 7086.07 degrees for VR Tabletop, equaling 

around 26 and 20 theoretical complete head rotations, respectively. Further, on 

average, VR Tabletop users spent 46.9% of their time in the main part of the Reflective 

phase without the kidney, compared to 32.2% for VR Standup users, prompting us to 

confirm H3c (users will spend the majority of time with the kidney turned on). 

Because VR Tabletop users could rotate the kidney when completing their tasks, 

kidney rotations were shown in the Reflective phase, which is users may have had 

more of an incentive to leave the kidney visible. The average number of tasks 

simultaneously visible was 6.42 (VR Tabletop, SD = 3.96) and 6.01 (VR Standup, SD = 

4.16). Finally, with regards to time slider usage: VR Tabletop users moved the slider 

almost twice as much on average as VR Tabletop users. Specifically, VR Tabletop 

users scrolled through 5.15 times the time span of their dataset, compared to 2.68 
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times for VR Standup. Since both of these values are far off from the 10 times we 

predicted in H3a, we need to reject H3a.  

Likewise, the mean position of the raw slider on a scale from 0 (first time stamp, 

beginning of the dataset) to 1 (last time stamp, end of the dataset) was similar for both 

setups at 0.79 for VR Tabletop and 0.73 for VR Standup users, requiring us to reject 

H3b (predicting that the most selected location for the slider would be towards the 

very end of the dataset).  

In Section 6.5.4, we investigate the influence of metrics during the Reflective phase on 

performance in the Plateau phase.  

6.5.4 Metrics during Reflective phase and influence on Plateau phase performance 

We further wanted to understand the relationship between metrics for user behavior 

as well as interactive tool usage and performance in the Plateau phase and self-

reported satisfaction. As discussed in Section 6.5.1, we detected no significant 

difference between control and experiment cohort for the two VR setups in terms of 

their Plateau performance. While for RQ1, we aimed to detect if there was a difference 

in Plateau phase performance, in this section, we focus on whether there are 

measurable VR behavior traits in the Reflective phase that exert an effect on the 

performance in the Plateau phase in any way. This could help us pinpoint what 

specific elements of the Reflective phase could be adjusted to improve user 

performance in subsequent studies or during the development of a Reflective phase for 

real-world VR training. We discuss effects (see Table 10) between metrics during the 

Reflective and Plateau phases for the experiment cohort to understand how behavior 
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in the Reflective phase influences performance in the Plateau phase in order to answer 

RQ4.   

Table 10. Regression table for relationship between tool usage as well as behavior in 
Reflective phase and performance in Plateau phase. Significant effects are highlighted 
yellow. Standard errors are given in italics below each effect size. 

Variable Time 

Normalized 
Position 

Accuracy 
(Distance) 

Rotation 
Accuracy 

(Angular 
Difference) 

Satisfaction 

convex_hull_left -0.00426 0.00087 2.23984*** -0.00218 

  0.1024 0.0009 0.6966 0.0551 

convex_hull_right -0.10238 0.00079 2.68827** 0.06548 

  0.3129 0.002 1.3039 0.1071 

convex_hull_head 0.29969 0.00104 1.23162 0.1835 

  0.5822 0.0053 1.5989 0.4664 

cluster_no_left -0.07976 -0.00023** -0.30223 0.03488*** 

  0.3704 0.0001 0.7223 0.0027 

cluster_no_right -0.28293* 0.00074** 0.43080*** 0.03476 

  0.1644 0.0003 0.029 0.0206 

cluster_no_head -0.01434 0.00078* -0.33586 0.08262*** 

  0.1829 0.0004 1.3199 0.0249 

total_time_spent 
-

0.00285*** 
0.00001 0.00104 -0.00003*** 

  0.0006 0 0.0039 0 

distance_lefthand 0.00745 -0.00002* 0.01688 0.0014 

  0.0083 0 0.0203 0.0016 
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distance_righthand 0.00537 -0.00003 0.00509 0.00242 

  0.014 0 0.0064 0.0022 

distance_traveled 0.00845 -0.00004** -0.01332 0.0019 

  0.0074 0 0.0111 0.0037 

degree_headrotationY -0.00007 0 -0.00010* 0.00001*** 

  0.0001 0 0.0001 0 

head_upDownY 0.04830* -0.00010*** -0.13422 0.01787* 

  0.0242 0 0.101 0.0101 

mean_rawSlider 9.00896*** -0.02615*** 1.65585 -1.75738* 

  0.5026 0.007 18.2541 1.0011 

distance_rawslider -0.13367** 0.00032 -0.3294 -0.02021** 

  0.0621 0.0004 0.5474 0.0098 

amountKidneyTurnoff -0.12624 0.00009 0.53339 0.01049 

  0.3022 0.0005 0.5338 0.0346 

time_without_kidney -4.41309 0.00876** 3.53305* -0.63312*** 

  4.3396 0.0033 2.0591 0.0953 

time_toggle_filter_usage -1.31098** 0.00935*** 2.05651 -1.08556*** 

  0.6081 0.0013 2.3138 0.2277 

avg_task_visible 1.01021 0.00107 0.14262 -0.20498*** 

  1.7188 0.0014 0.4511 0.0333 



201 

 

avg_number_tasks_visible 0.062 -0.00003 0.30905 -0.02092 

  0.1001 0.0001 0.3333 0.046 

***significant at the 1% level, **significant at the 5% level, *significant at the 10% 
level 

First, we find that spending more time in the Reflective phase (total_time_spent) has a 

significant negative effect on task completion time in the Plateau phase (users 

become faster), without jeopardizing position or rotation accuracy. However, it has a 

negative effect on the feeling of satisfaction. This might be, because the Reflective 

phase presents an analytical mode as opposed to the more task-focused and almost 

playful modes like the Ramp-Up and Plateau phases where users actually get to move 

tissue blocks and interact with virtual objects in a more natural way. Additionally, 

many users, when confronted with their own data, may have found their performance 

in the Ramp-Up phase to have been lacking.   

Second, not seeing the base map, i.e., the kidney, for extended periods of time in the 

Reflective phase (time_without_kidney) has a significant negative effect on 

satisfaction and a positive effect with both distance (position) and angular 

difference (rotation) in the Plateau phase, resulting in lower position and rotation 

accuracy. This is a wholly undesirable. Seeing one’s data without the proper context 

seems to be a major issue not only for performance but also enjoyment of the entire 

VR experience. The integrity of the base map or reference system thus seems 

conducive to accuracy and user satisfaction for this experiment.    

Third, viewing later, more complex tasks (avg_task_visible, likely with data more 

spread out due to the larger distance between the tissue block and the target block) 
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also has a negative effect on satisfaction, likely leading to confusion for many users 

through display clutter. Likewise, spending more time analyzing later tasks in the 

Reflective phase indicated by the time slider (mean_raw_slider, likely with previous 

tasks visible) has a significant negative effect on centroid inaccuracy, but a positive 

effect on task completion time and a less significantly negative effect on 

satisfaction. It may thus be useful to not show aggregated data by default. In the 

Reflective phase, the user saw started with the time slider at 100% (last time stamp, 

end of the dataset), with all tasks and graphic symbols visible. Slider usage 

(distance_rawslider) was shown to have a negative effect on completion time but 

also on satisfaction.  

Fourth, we identified metrics that enhanced both accuracy and satisfaction metrics. 

The total number of degrees of head rotation around the y-axis 

(degree_headrotationY) had a negative effect on angular difference (rotation accuracy) 

but no effect on distance (position accuracy), as well as higher satisfaction without 

influence on completion time, prompting us to reject both H4c and H4d. Thus, 

encouraging users to look around in their environment seems to be a good design 

guideline for similar interfaces, and the ability to see data with depth using head 

movements is a key element of VR. Additionally, the number of clusters of the left 

hand (cluster_no_left) had a positive effect on satisfaction and a negative effect of 

distance (higher position accuracy). Similarly, the head movement up and down the 

y-axis (head_up_DownY, i.e., exploring the data from different vertical viewpoints) had 

a positive effect on satisfaction and a negative effect on distance (higher position 

accuracy) but also led to led to an increase in task completion time. We have to 

reject H4a, because while the total distance traveled by the head as well as the left 
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hand was negatively correlated with distance (confirming H4b), it had no effect on 

completion time.  

6.5.5 Mid-questionnaire and correlation with performance in Plateau phase 

Finally, in RQ5, we were interested to check the relationship between the task scores 

in the mid-questionnaire, which we presented to users between intro and the main 

parts of the Reflective phase, and performance metrics in the Plateau phase (for 2D 

Desktop users only). We had hypothesized that there would be significant negative 

correlations between task score and position accuracy in terms of distance between 

the tissue and target blocks (H5a), error and bias (H5b), and rotation accuracy in 

terms of angular difference (H5c). Further, we predicted that there was no significant 

correlation between the task score and the completion time (H5d). Lastly, we assumed 

that the majority of users would agree or strongly agree that the subject shown to 

them in the intro part of the Reflective phase was highly fast and accurate (H5e). 

Figure 54 shows the distribution of right and wrong answers to questions in the mid-

questionnaire as well as a stacked bar graph of our users’ assessment of the 

performance of the best subject in their respective setup shown to them during the 

intro part of the Reflective phase.  
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Figure 54. Bar charts showing the distribution of right and wrong answers for the mid-
questionnaire.  

As becomes apparent from Figure 54, VR Tabletop and VR Standup subjects, with one 

exception in each setup, were all able to determine that the color of the tissue block in 

the Reflective phase encoded the rotational difference between the target and tissue 

blocks. Similarly, all 2D Desktop users correctly stated that the lines in the line graph 
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indicated the distance and rotational difference between the blocks. The majority of 2D 

Desktop users also answered all the following questions correctly; we found the 

maximum number of wrong answers (four each) when we asked them to indicate a) 

the point in the line graph with the maximum rotation difference, and b) the task with 

the highest rotational difference at task submission. Finally, all subjects were 

presented with a 7-point Likert scale (from -3 to +3) for their level of agreement about 

whether the data shown to them constituted a high performance for completion time, 

position accuracy, and rotation accuracy (see bottom row in the stacked bar graph in 

Figure 54). Notably, the average level of agreement with these statements was much 

higher for position (mean2D Desktop = 2.1428, meanVR Tabletop = 1.9285, meanVR Standup = 

1.6428) and rotation accuracy (mean2D Desktop = 1.2142, meanVR Tabletop = 1.5714, meanVR 

Standup = 1.7142). This was probably due to the explicit visual encoding of these two 

metrics in the data, even more so for 2D Desktop users with their explicit line graphs 

(see Section 6.3.2). On the other hand, users were less convinced of the quality of the 

user’s performance with regards to completion time (mean2D Desktop = 0.4285, meanVR 

Tabletop = 0.7857, meanVR Standup = 0.7857). Notably, completion time was never explicit 

encoded in the data, especially for VR users, who had to estimate the task completion 

time by looking at time stamp intervals between tasks. Likewise, 2D Desktop users 

could gauge the completion time by looking at the distance between the vertical dot-

dash lines that encoded the end of one task and the beginning of the next, but this 

kind of visual encoding was less explicit than the lines indicating position and rotation 

accuracy.   

Finally, to test our hypotheses, we checked for correlations between task scores and 

performance in the Plateau phase (see Table 11). 
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Table 11. Correlation check for RQ5 hypotheses. 

Hypotheses PerformanceVar Correlation 

H5a Normalized Mean Position Deviation -0.74 *** 

H5b(1) X-Error -0.38 

H5b(2) Y-Error -0.45 

H5b(3) Z-Error -0.22 

H5b(4) Bias -0.6 ** 

H5c Mean Rotation Deviation 0.08 

H5d Mean Time 0.15 

***significant at the 10% level, **significant at the 5% level, *significant at the 1% 
level 

We found significant correlations between the task score and position accuracy and 

bias, allowing us to confirm H5a and H5b(4). H5b(1-3) have to be rejected, because 

no correlation exists between test results and any error specific to x, y, or z-axis. 

Further, because there is no correlation between task score and rotation accuracy, we 

have to reject H5c. Additionally, we accept H5d, because there is indeed no 

correlation between task score and mean completion time. Finally, we also confirm 

H5e (most users accurately state that the data shown to them in their intro part of the 

Reflective phase comes from a high-performing subject. VR subjects correctly 

answered that the data shown to them belonged to a high performer in larger numbers 

while the answers of 2D Desktop subjects were more mixed. Additionally, the high 

performance in the position and rotation accuracy measures was more easily identified 

by our users than the completion time (see Figure 54).  
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7. User Study 3: Improving Completion Time, Memory, and Satisfaction for 

Traversing Virtual Buildings Using VR Data Visualizations 

Following the RUI VR Reflective phase study, we designed a second experiment 

involving the navigation of virtual buildings. We took a model of Luddy Hall, the home 

of the School of Informatics, Computing, and Engineering at Indiana University in 

Bloomington, IN, USA. The model was designed by Philip Beesley Architect Inc. 

(http://www.philipbeesleyarchitect.com/). Since this model was built as a scaffold for 

a public art piece to be installed by the architect’s studio 

(https://cns.iu.edu/amatria.html), it came in two parts: a simpler version of the entire 

building where most structures were just hinted at, without any materials; and a more 

detailed version of just the atrium of Luddy Hall. For the entire experiment, the user 

spent time only in the atrium of Luddy Hall. Detailed screenshots are shown in Figure 

55.  

http://www.philipbeesleyarchitect.com/
https://cns.iu.edu/amatria.html
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Figure 55. Exterior and interior shots of the Luddy Hall model. A: top view with atrium 
highlighted orange. B: 4th floor near star case, start point for all navigation tasks. C: 
side view, atrium highlighted. D: view from first floor up the stair case.  

The goal of this study was to identify whether we could observe performance 

improvements between a control and experiment cohort. Both cohorts performed a 

series of navigation tasks using a VR HMD and controllers for two sets of 24 tasks 

(including tutorials) with the option of three different navigation methods, with a break 

in-between (control) and a Reflective phase to inspect their performance from the first 

trial in order to formulate strategies for improvement in trial 2. We implemented three 

common navigation choices in VR (walking, teleporting, free-flying), which we explain 

in more detail in Section 7.4.  
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7.1 Research questions and hypotheses 

For our study, we aimed to answer the following research questions and provided the 

following hypotheses. 

RQ1: Is there a difference in completion time between the control and experiment 

cohorts during trial 2?  

H1: The experiment cohort achieves significantly lower completion times than the 

control cohort during VR Trial 2.   

RQ2: Is there a difference in the rate of change in completion time from trial 1 to trial 

2 between the two cohorts? That is, when computing the differences in completion 

time per trial and per subject, and then compare these values between the cohorts, is 

there a significant difference?  

H2: The experiment cohort achieves significantly larger changes in completion times 

between trial 1 and trial 2.  

RQ3: When asked questions about the tasks and the virtual building after taking a 

break (control) and completing their Reflective phase (experiment), is there a difference 

in score between the two cohorts?  

H3: The experiment cohort achieves higher scores in the mid-questionnaire than the 

control cohort. 

RQ4: What are the preferred choices of navigation methods during the last round of 

tasks?  
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H4a: Subjects prefer teleporting when finalizing a task within sight of the start 

position.   

H4b: Subjects prefer free-flying when finalizing a task out of sight of the start position.   

H4c: Subjects prefer walking just as they finalize a task. 

RQ5: Is there a difference in self-reported satisfaction between the two cohorts at the 

end of the experiment?  

H5: There will be no significant difference in satisfaction between the cohorts. 

7.2 Study design 

We developed our research design for two cohorts (control and experiment), which, for 

the most part, performed identical steps (see Figure 56). The major difference was the 

addition of a Reflective phase for the experiment cohort. The study was designed to 

last approximately 30 to 45 minutes per subject.  

 

Figure 56. Luddy VR study design. Both cohorts repeat the same set of VR tasks twice 
("VR Trial 1" and "VR Trial 2"). Control users take a break before answering the mid-
questionnaire; experiment users get a Reflective phase. 

When arriving at the research site in Luddy Hall, the subject was asked to sit down at 

a table with a laptop running a survey. The survey began with a study information 

sheet before presenting a pre-questionnaire to obtain information about the subject’s 

demographic background as well as prior experience with VR, video games, 3D 
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applications in general, data visualizations, and their familiarity with Luddy Hall. 

Following that, each subject put on an HTC Vive HMD and took two VR controllers. 

During the following VR Trial 1, they performed a total of 24 tasks in four rounds.  

Following that, the control group took a break from the study. The research facilitator 

encouraged them to stand up and walk around the research area. The experiment 

group, on the other hand, stayed in VR and was presented with a Reflective phase, 

where they saw their own data visualized as 3D trajectories across a miniature version 

of the building. We describe this in more detail in Section 7.5.  

After the break (control) and the Reflective phase (experiment), subjects from both 

cohorts sat down at the laptop again to fill out a mid-questionnaire, where we asked 

them how many tasks they had completed in total, how many floors the building had, 

and more questions. The mid-questionnaire is discussed in Section 7.6.  

Following the mid-questionnaire, all subjects donned the VR gear again for VR Trial 2, 

where they repeated the same 24 tasks from VR Trial 1, but without any audio 

tutorials. We still had them perform the tutorial tasks but excluded them from data 

analysis, see Section 7.9.  

Finally, all subjects completed a post-questionnaire, where we asked them to rate their 

own performance, state their preference for the navigation tasks, and indicate their 

satisfaction with their performance. After successful completion of all parts of the 

study, each subject was remunerated with a $20 gift card.  
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7.3 Task difficulty 

At the core of this study were two sets of 24 navigation tasks in VR. In this section, we 

describe what the individual task entailed, where they were located, and what was 

required from the user. An overview of all 24 navigation tasks can be found in Figure 

57 (B). During each of the first three rounds, only one navigation method was possible, 

starting with walking, then going to teleporting, and ending with free-flying. In the 

fourth round, the subject could choose which navigation method they wanted to use, 

and they could change it at any time. The first task in every round served as a mini-

tutorial where a pre-recorded voice explained the scope and goal of the experiment as 

well as the controls of the currently active navigation method to them. 
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Figure 57. This distribution of tasks across Luddy Hall and task sequence. A: the five 
navigation tasks (plus tutorial) at their locations in two aligned cross-section views of the 
building. B: all 24 tasks in sequence with color-coded difficulty level and possible 
navigation methods.  

Luddy Hall is an angular building with a central staircase leading through an atrium. 

A variety of study rooms are built into the atrium, adjacent to the stair case. This 
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setup makes Luddy Hall a rather challenging environment for virtual (and physical) 

navigation.  

All 24 tasks entailed navigating from a fixed start position (see the human figure in 

Figure 57, A) to a fixed target position. The start position was identical across all 

tasks, and the target position for each task did not change between rounds. The start 

position was on the fourth floor at the top of a staircase leading through the atrium 

(see Figure 55 above). The target positions for tasks 1 and 2 were on the same floor 

and within sight, in two study rooms. Tasks 3-5 were on increasingly lower levels, with 

task 3 being inside another study room, task 4 being in a small office space under the 

staircase on the ground floor, and task 5 being in a classroom in the lower levels of the 

building. We used the increasing distance between the start position and a task target 

position as well as whether a target was within sight or out of sight to increase the 

difficulty over time.  
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Figure 58. Anatomy of a task room. A: the tutorial task room from the outside. B: note 
that the red exclamation mark is rendered on top of the wall in front of it. C: task 
submission instructions. D: the submission in progress.  

Inside each task room, there was a flat, blue panel with a white sphere inside it, with a 

diameter of about 10 cm. The center of the sphere was about 120 cm above the floor. 

Below the sphere, a text panel instructed the user to finish the task by holding their 

controller against the sphere for one second. When the user arrived at a task, they had 

to locate the panel, approach it, interact with the sphere; subsequently, they were 

transported back to the start position. A fade effect with a duration of one second 

smooth the transition between standing in the task room and being back at the start 

position.  

As has become evident, the six different task rooms were distributed all across the 

building. In order to indicate to the user where to navigate next, a red exclamation 
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mark was placed as a waypoint inside each task room. We used a custom shader to 

ensure that the waypoint was rendered on top of any other surfaces in the scene (see 

Figure 58, B), effectively imitating best-practice navigation aids from video games, 

especially first- and third-person ones. To help the user locate the task room once in 

sight, we added a flurry of around 4000 little, twinkling, purple particles to each room.  

7.4 Navigation methods 

For this study, we aimed to determine the usefulness of three navigation methods in 

virtual environments. Before we describe the movement, controls, and features for all 

three methods (and the navigation choice mechanism in round four of VR Trials 1 and 

2), we briefly describe how movement in this user study is generated.  
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Figure 59. Illustration of basic navigation. 

In Figure 59, we show the three basic steps at the basis of every navigation action. The 

user provided input via their right controller and their HMD (Step 1). Our custom 

navigation scripts them took the user input and translated the camera rig with the 

user inside accordingly (Step 2), leaving the user at the new location (Step 3). We 

describe controls and features for each method in Figure 60, and the calculations for 

speed and direction of the translation in detail in Figure 61. 

In addition to moving their entire camera rig with them (see cuboid shape in Figure 

59), they could also move around physically while the camera rig stayed in place. This, 

however, only allowed them to cover small distances, limited by the size of the play 

space, see Section 7.8.  
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Figure 60. A comparison of movement, controls, and features for all three navigation 
methods. 

Each navigation method was defined by three features: movement, controls, and rules. 

Controls specified the user’s potential inputs via their controllers and HMD; rules were 

set by the researchers when programming the navigation methods; movement was the 

result of the previous two and defined how the user could move through the world (see 

Figure 60). For each navigation method, we created a control scheme the user learned 

during the tutorial task of each round.  
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Figure 61. Advanced illustration of how direction and speed are calculated from user 
input, for each navigation method. 

Walking was the navigation method that most closely imitated real-world locomotion 

on foot. The user was bound by gravity; this meant that when leaping over an edge, 

they could fall until they hit a surface with a collider. Of course, it was possible to 

walk up and down the stairs traversing the center of the atrium. We added invisible 

walls to the outside of the atrium to prevent users from falling to infinity. These walls 

were only active during sections where the user could only walk. We implemented a 

simple reset button for the research facilitator in case a user managed to fall out of the 

building anyway. A short burst of intensive pilot studies before study deployment 

helped us ensure that this case was very unlikely, even for less experienced study 

subjects.  

The user controlled the speed and direction of their walking with their right controller 

and their HMD. The thumbpad on the controller is represented as a unit circle in the 

SteamVR SDK, and touchpad positions are given as (x, y) positions (where -1 <= x <= 1 

and -1 <= y <= 1). The walking speed was then determined by the product of the 

distance of the touch position from the center of the touchpad and the maximum 

speed possible in the walking mode (2.5 meters per second). The walking direction, on 

the other hand, was determined by two angles: the y-rotation value of the HMD (i.e., 

which direction the user was looking, ignoring x- and z-rotations since walking into 

the air was not possible), and the angular distance between the position of user’s 

thumb and the 12 o’clock line on the touchpad (see Figure 61). This setup allowed the 

user to walk independently of the direction of their gaze if needed by simple use of 

their thumb. Modulating the speed with the thumb ensured that faster and slower 



220 

 

velocities were possible, and by moving their thumb into the lower quadrants of the 

thumbpad, the user could also walk backwards if needed.  

Teleporting allowed the user to traverse distances within sight with a click of the 

touchpad on their right controller. In order to teleport, the user had to point their 

controller towards a suitable surface, and a purple ray would then indicate their target 

position were they to execute the teleport. Teleporting is a popular navigation method 

in VR video games. 

While the teleport speed was constant, the user set the direction of their teleport with 

their controller. We embedded a ray caster inside the 3D representation of the 

controller, which would persistently shoot rays into the scene. If a suitable surface 

was hit, the user saw a representation of the ray in the form of a straight, purple line, 

and a small purple sphere marked the hit location, indicating the final destination of 

the teleport were they to execute it. A teleport was triggered by pressing the button 

embedded in the right touchpad. When arriving at a teleport destination, the user’s 

virtual camera rig was automatically adjusted such that the user “stood” on the 

ground. The only surfaces that allowed teleportation were walkable surfaces. The ray 

always returned a hit location on the first suitable surface it encountered; it was thus 

only possible to traverse multiple floors at once if the user approached the staircase in 

the center of the atrium. Teleporting thus only allowed the user to navigate within 

sight.   

Finally, free-flying allowed the user to travel through space with increased freedom. 

Neither gravity nor physical barriers were in their way. Using their right controller, the 

user could manipulate speed and direction. Speed was defined as the product of the y-
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value of the user’s touch position on the thumbpad (-1 <= y <= 1) and the maximum 

speed for free-flying, which was set to 3 meters per second. The flying direction 

corresponded to the forward vector of the right controller, i.e., wherever the user 

pointed their right hand. Flying backwards was thus also possible.  

When all navigation methods first became available, the navigation method active 

previously was deactivated, and we did not give the user a standard method to prevent 

any biases towards a specific navigation method. The user could switch between all 

three as they pleased and at any point in time. When putting their thumb onto the left 

touchpad, a radial menu popped up, with four sections (one for each navigation 

method, indicated by icons, and one to cancel). The user could then move a dot over 

the radial menu, using their thumb as a pointer device. When they released their 

thumb when hovering over a section, the corresponding navigation method was 

activated (or the menu was simply canceled). The currently active navigation method 

was displayed as text on a small panel over the left controller.  

7.5 Reflective phase 

Users in the experiment cohort got to inspect their own data in a mix of 3D and 2D 

data visualization, all inside VR (see Figure 62 and Figure 63). To that end, we created 

a 3D trajectory visualization, consisting of a dot density map of user positions over 

time, and a bar graph on a 2D panel over the user’s left controller. This panel also 

contained a set of checkboxes to turn the data for individual tasks on and off. This 

setup presents a mix of spatial and abstract data visualization in one comprehensive 

VR interface for testing if users can utilize these types of data visualizations to improve 

their performance in VR Trial 2.  
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The visualization was created at runtime using a custom C# script, reading in data 

from a CSV file generated while the user completed VR Trial 1. The script iterated 

through every row in the dataset, instantiated the appropriate graphic symbol 

depending on the navigation method chosen, and added a data component that could 

later be used for the interactive legend to turn parts of the data overlay and off 

depending on user input.  

To familiarize themselves with the visualization and the controls, we presented the 

Reflective phase to the user in two parts: First, we showed them data from a high-

performing user in the control cohort; simultaneously, they were listening to a 3:41s 

audio tutorial introducing them to the base map, the data overlay, and the controls 

while outlining the goal of the Reflective phase: to identify strategies to improve their 

own performance while inspecting their own data. Then, after the tutorial was done 

and the user decided they had had enough practice, we loaded their own data in the 

visualization.  
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Figure 62. Approximation of a user in relation to the 3D base map and visualization in 
VR. 

Base map and data overlay: The miniature model of Luddy Hall was around 75 cm 

tall, floating in front of the user such that the roof of the building was around 140 cm 

above the floor. While in the Reflective phase, the user could free-fly around the model 

so that they could inspect the model from all angles, independently of their physical 

height and range of motion. In order to achieve this, the entire visualization needed to 

be rescaled, also at runtime.  
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Figure 63. Three views of a user's data in the Reflective phase. Green cubes in the 
visualization show the location of the task submission sphere for each task. Blue, pink, 
and yellow visualize walking, teleporting, and free-flying, respectively.  

Visual encoding: We chose color hue to represent navigation method, and x, y, z-

position of the dot to encode the user’s position. For teleport, we needed a way to 

make links between teleport start and point visually apparent, and encoded each 

teleport as a pink line, starting with the same width as the dot, and then thinning out 

evenly towards the teleport target. Figure 64 contains a series of detailed screenshots 

of the visual encoding across tasks and navigation methods.  
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Figure 64. Visual encoding details. A: a user’s approaches to task #5. Note that there 
are two yellow trajectories, because they also used free-fly to finish this task when they 
had the choice. B: the start position on the fourth floor and the 24 trajectories leading 
away from it. C: a stop during a series of teleports. D: Note how the line leading to the 
teleport stop is thin, and the line leading away is wide, signaling the direction of the 
teleport. 

Bar graph for completion times: In order to give the user insight into their 

performance, we displayed a 2D bar graph on top of their left controller with 

completion times for all 24 tasks (see Figure 65). On the y-axis, we showed the 

completion time in seconds; the color of the bar encoded the navigation method 

possible during the task; and the x-axis contained the task number. On top of each 

bar, the completion time in seconds (rounded to one decimal) was displayed.  
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Figure 65. The interactive legend and bar graph visualization for the completion times of 
all 24 tasks in VR Trial 1. Note the link and brush functionality as the user is hovering 
over the bar for task #13. 

Interactive legend: The bar graph functioned as part of an interactive legend that 

helped the user turn parts of the data overlay on and off. To help the user understand 

the connection between task number and completion time, and to allow them to focus 

on the tasks they wanted to explore, we implemented a link and brush functionality. 

The subject could use their right controller as a pointer. A purple sphere indicated the 

current hit point (see Figure 65). When hovering over a bar, both the bar and the 
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corresponding checkbox were highlighted green. This way, the user could identify 

particularly long or short completion times and then inspect the corresponding 

trajectories in the Luddy Hall model. A checkbox to show or hide all data was located 

at the bottom of the interactive legend.   

7.6 Mid-Questionnaire 

Following the Reflective phase (experiment cohort) and short break (control cohort), all 

subjects were asked to sit down at the laptop again and answer 10 questions in a mid-

questionnaire. In this questionnaire, we asked subjects about the features of the 

building (number of floors), the tasks they performed (how many tasks total, on how 

many floors, how many tasks on how many floors etc.), and, finally, we showed them 

two screenshots of the building (top view and side view), asking them to click where 

they though the start position was. The goal of the mid-questionnaire was to test 

whether there was a difference in spatial understanding between the two cohorts.  

7.7 Metrics 

To describe a user’s performance, we captured a variety of metrics, both while in Unity 

via telemetry as well as derived data (such as completion time) and task scores from 

the mid-questionnaire.  

The main metric to assess performance was task completion time in seconds, 

measured from the moment the user gained control of their movement to the frame 

where they had touched the virtual submit button for one second (see Figure 58D), at 

which point the timer was reset.  
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Another metric for our data analysis was the score users attained in the mid-

questionnaire section of the experiment. There was a total of 10 questions for a total of 

10 points. Finally, we included a self-reported satisfaction score at the end of the post-

questionnaire, where the user had to indicate whether they felt satisfied after the 

experiment, using a 5-point Likert scale.  

7.8 Apparatus 

We ran our experiment on an Alienware 17 R4 with a 17.3” display, running Windows 

10. We used an HTC Vive VR HMD in a play space of around 9x9 feet (3x3 meters) in a 

secluded collaborative space in Luddy Hall on the Indiana University campus in 

Bloomington, IN, USA. We used screen-recording software as well as a Logitech C930e 

webcam to capture the user’s action with audio and video, both in VR and the physical 

world.  

7.9 Results 

We recruited 71 subjects via email lists, social media, word-of-mouth, and from a pool 

of previous user study subjects over a period of 16 days. We conducted the experiment 

in a secluded area of Luddy Hall itself, granting privacy for the subjects. While 

running the experiment, two subjects had to abort their participation during VR Trial 

1 due to motion sickness. One more subject had to stop during VR Trial 2 for the same 

reason. This left us with a total of 68 subjects for data analysis (34 per cohort). 

Subjects spent an average of 43.5 (control) and 60.4 minutes (experiment) in the 

study, starting with the study information sheet at the beginning of the survey and 

ending after submitting the post-questionnaire. For all analyses, we omitted the 
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tutorial task, i.e., the first task in every round where users were introduced to the 

navigation method for that round.  

7.9.1 Demographics 

30 of our subjects identified as female and 38 as male. The majority of subjects (40) 

were between 21 and 30 years old; further, 20 were between 18 and 20, six were 

between 31 and 40, and two were between 51 and 60 years old. The overwhelming 

majority were English native speakers (54). The largest group of non-native speakers 

spoke Bengali (five subjects). 65 subjects were right-handed; 3 were left-handed. 

Around half of the subjects (32) stated that they had no vision impairments; 26 were 

near-sighted. Participants were allowed to wear glasses under the HMD or contact 

lenses as needed. 67 subjects indicated that they were not color-blind; one subject 

preferred not to answer that question.  

In terms of prior experience with VR, video games, and 3D applications in general, the 

overwhelming majority of subjects had used VR before (51); out of these, 37 had used 

it rarely, nine occasionally, and five often. The HTC Vive, Vive Pro, or Cosmos was the 

most used VR system, indicated by 21 subjects. 10 did not remember which device 

they had used. Over two thirds of subjects (43) said that they played video games in 

the past 12 months, mostly on smartphones or other handheld devices (27). Also, 27 

subjects had played first-person shooters. Further, 36 subjects had used 3D software 

before, such as Rhino (6), AutoCAD (5), and Unity (5). When asked whether they would 

say that they were familiar with Luddy Hall, 10 subjects strongly agreed, 22 somewhat 

agreed, 10 neither agreed nor disagreed, nine somewhat agreed, and 17 strongly 

disagreed. We also asked our subjects to state their familiarity with six basic 
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visualization types (tables, charts, graphs, maps, trees, and networks) and did not 

find any correlation between the self-reported familiarity scores with six visualization 

types and the correct answers in the mid-questionnaire.  

7.9.2 Performance improvement 

To answer RQ1, we needed to compare the completion times for VR Trial 2 for both 

cohorts. We isolated each subject’s task completion times (excluding the four tasks 

that corresponded to the tutorial task in VR Trial 1), leaving us with 20 observations 

by subject (680 by cohort). To ensure that observations where users needed excessive 

amounts of time did not obstruct the validity of our analysis, we removed 39 

observations from the control cohort (m = 50.70 seconds) and 38 observations from 

the experiment cohort (m = 47.13 seconds). We then performed a Welch’s Two-

Sample t-test with the remaining observations. This showed that there was a 

significant difference in task completion times between the two cohorts during VR 

Trial 2 (t = 2.465, p = 0.01383). We were then interested in determining whether this 

difference was caused by the Reflective phase or whether subjects in the experiment 

cohort were naturally more able in VR. We thus compared the completion times for VR 

Trial 1 after removing 42 and 40 observations from the control and experiment 

cohorts, respectively. A Welch’s Two-Sample t-test then showed no significant 

difference between the two cohorts for completion times in VR Trial 1 (t = -0.84297, 

p = 0.3994). We thus confirm H1 (the experiment cohort achieves significantly lower 

completion times than the control cohort during VR Trial 2). Figure 66 contains a 

collection of boxplots for the completion times per task and navigation method, 

separated by cohort.  
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Figure 66. Faceted scatter graphs of completion times by task number (horizontal) per 
round (vertical). 

Further, while it was to be expected that both cohorts would improve their times 

during VR Trial 2 (due to the learning effect), we wanted to identify the difference in 

the rate of change for completion times. We found a significant difference between 

the two cohorts (mcontrol= -5.38 seconds, mexperiment = -7.48 seconds, t = 3.1458, p = 

0.001693). This means that users in the experiment cohort improved by more than 2 

seconds compared to users in the control cohort (on average). We thus confirm H2. 

7.9.3 Mid-Questionnaire score 

In addition to checking whether our intervention helped the experiment cohort achieve 

lower completion times than the control cohort in VR Trial 2, we compared the scores 

from the mid-questionnaire, where we asked our users to answer questions about the 

navigation tasks they performed with regards to the spatial layout of Luddy Hall. We 
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found that experiment users performed significantly better than control users with 

mean scores of 5.71 and 4.29, respectively (t = -2.7028, p-value = 0.008734). We 

thus confirm H3. Figure 67 shows violin plots for the total task scores for both 

cohorts along with jittered points for all 68 scores (and both medians).  

 

Figure 67. Violin plots of total task scores for bpth cohorts. The white dot in each plot 
encodes the median score (medianControl = 4, medianExperiment = 5.5). The black dots 
symbolize all 68 individual scores. Horizontal jitter has been applied to avoid 
overplotting.   

To further prove the user’s understanding of the spatial layout of Luddy Hall, we 

included a task where we presented them with two screenshots of Luddy Hall, one 

from above, one from the side. Figure 68 shows a dot density map of user clicks, color-

coded for correct vs. incorrect answers, and shape-coded for cohort. We added a 60px 

margin of tolerance, resulting in an area of ~3.5 m2 in real-world units.  
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Figure 68. Dot density maps pf click positions where users were asked to indicate where 
in these screenshots their start position was. A: top view. B: side view.  

Like the rest of the mid-questionnaire, the visualization shows a stark difference 

between the cohorts. For the top view, there were 12 correct answers (4 for control, 8 

for experiment); for the side view, there were only 10 correct answers (2 for control, 8 

for experiment). The difference in correct answers for the side view between the 
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cohorts is significant (t = -2.0899, p = 0.04158). This is likely thanks to the Reflective 

phase, because every trajectory in the Reflective phase visualization marked the user’s 

start position (see Figure 64B), thus giving an advantage to the experiment cohort.  

While many users were at least able to determine that they had started somewhere in 

the atrium of Luddy Hall, a surprisingly large number of subjects mistook the barely 

modeled wings of the building for the location where they spent the experiment (see 

Figure 68B). As becomes apparent from Figure 68A, on the other, the top view helped 

users narrow down the amount of choices, and the majority of subjects picked one of 

the four corners of the atrium. Note that we found no significant correlation between 

how familiar users were with Luddy Hall as indicated on a 5-point Likert scale and the 

total score in the mid-questionnaire.  

7.9.4 Choice of navigation methods 

During the last round of tasks in VR Trials 1 and 2, the subjects could switch between 

navigation methods at will. In RQ4, we wanted to check what navigation methods 

subjects would employ when completing these tasks. We had hypothesized that 

subjects would use teleport to reach targets within sight of the start position (H4a), 

free-fly for targets out of sight of the start position (H4b), and walking at the very end 

as a means to get to floor level (H4c).  
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Figure 69. Navigation methods selected by subjects at task submission during VR Trial 
2. Three outliers for the control cohort were removed for Task 5. 

Figure 69 shows a bar graph of the last logged navigation method for the 5 tasks in 

the last round of VR Trial 2 for all 68 subjects (minus three outliers in the control 

cohort), yielding 337 observations. The tendency for all subjects to end tasks 1 and 2 

teleporting (both are on the same floor as the start position) becomes apparent; for 

tasks 3 through 5, subsequently, users preferred free-flying as a way to traverse larger 

distances quicker (and go through walls thanks to the lifted physical restrictions when 

using free-flying). While we can confirm H4a (teleporting for targets within sight) and 

H4b (free-flying for targets out of sight), only a small minority of users ever ended a 

task by walking, prompting us to reject H4c (walking is preferred for ending tasks 

quickly).  
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Figure 70. The "winning strategy". A: using teleport for targets on the same floor as the 
start position. B: using free-fly for all others. 

7.9.5 Satisfaction  

In terms of satisfaction, we can report that we found no significant difference 

between the cohorts, and thus confirm H5. Both had a high mean satisfaction on a 5-

point Likert scale (m = 4.29, SD = 0.84). Additionally, we found no significant 

correlation between a user’s score in the mid-questionnaire and their reported 

satisfaction. While the overall number of users who reported at least a little motion 
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sickness was quite high (40 subjects, m = 1.63, SD = 0.57), it appeared to have no 

significant correlation with the total score. Similarly, we found no significant 

difference in motion sickness between the two cohorts (t = -0.63481, p = 0.5279).  

7.9.6 Post-Questionnaire results 

In our post-questionnaire, we aimed to identify which navigation method was the most 

popular. To that end, we asked subjects to rank all three navigation methods from 

most to least favorite. Table 12 contains an overview of different rankings and their 

frequency 

Table 12. Rankings for navigation methods. 

Walk Teleport Free-fly Frequency 

1 2 3 5 

2 1 3 2 

2 3 1 7 

3 1 2 19 

3 2 1 35 

The absolute majority of subjects (n = 35) preferred free-fly to teleport and walk, just 

over a quarter (n = 19) favored teleport over free-fly and walk, and only a minority of 

subjects liked walk the most (n = 5). Note that no single subject preferred walk over 

free-fly and teleport (in that order. Further, we found that all users, regardless of 

cohort, liked the VR experience as indicated by high means on a 5-point Likert scale 

for different aspects: overall (m = 4.57, SD = 0.61), hardware (m = 4.49, SD = 0.78), 

and instructions (m = 4.59, SD = 0.6).  
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7.9.7 Reflective phase feedback 

Similarly, we aimed to measure how subjects in the experiment cohort perceived the 

interactive tools at their disposal during the Reflective phase using a 5-point Likert 

scale, and found that subjects overwhelmingly found them useful: filters and 

checkboxes (m = 4.32, SD = 0.81), color coding (m = 4.68, SD = 0.77), the bar graph 

of completion times (m = 4.29, SD = 0.97), and the ability to fly around the miniature 

base map of Luddy Hall (m = 4.26, SD = 0.93). Finally, the majority of users indicated 

that they were able to identify a better strategy to achieve faster completion times in 

the next round of tasks (m = 4.32, SD = 0.59).  

The subjects then indicated how efficiently they thought they had navigated the 3D 

space while only one navigation method was possible (again using a 5-point Likert 

scale). These numbers reflect the rankings of the navigation methods discussed 

earlier: Users overall found that they did not perform efficiently with regards to 

walking (m = 2.29, SD = 1.06) while teleporting (m = 3.74, SD = 1.05) and free-fly (m 

= 4.12, SD = 1.15) were ranked higher. 

7.10 Discussion 

In this chapter and chapter 6 above, we presented two user studies with Reflective 

phases involving different interactions and base maps (see Table 13).   
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Table 13. Side-by-side comparison of RUI Reflective and Luddy VR user studies. 

 RUI VR Reflective Luddy VR  

Setups 
(VR/Desktop) 

3 (2D Desktop, VR Tabletop, VR 
Standup) 

1 (VR) 

Cohorts 2 (control, experiment) 2 (control, experiment) 

Visualization types Map (VR setups), graph (2D 
Desktop) 

Map, graph 

Scale of reference 
system 

1:1 1:30 

Graphic symbols Volume (VR setups), line (2D 
Desktop), linguistic/text (2D 
Desktop) 

Volume, line, 
linguistic/text 

Graphic variables Position (3D, 2D), color hue, color 

saturation 

Position, color hue, size, 

velocity 

Interactions Filter, navigate, animate/replay Filter, navigate, link and 
brush 

We designed these Reflective phases by consulting the DVL-FW, specifically its 

typologies for interactions, graphic symbols, and graphic variables. Notably, for the 

Luddy VR study, users that experienced the Reflective phase had significantly better 

performance in terms of task completion time and better scores in the mid-

questionnaire. We saw no such improvement for users in the VR setups of the RUI VR 

study, only for the 2D Desktop users who were presented with line graphs. In this 

section, we examine the differences between the Reflective phases in these two studies 

as far as the DVL-FW typology is concerned.   

7.10.1 Comparison of Reflective phase implementations 

The key differences between the Reflective phases are listed in Table 13. Based on 

these, we conclude that a variety of factors accounted for our results. 
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Visualization type and scale of reference system: First, while the RUI VR Reflective 

phase visualization presented the user’s movement and tissue block data on a 1:1 

scale, in the Luddy VR study, the reference system for the data was shown at a scale 

of 1:30 such that the miniature version of Luddy Hall was displayed at a length of 

approximately 150 cm measuring from the southwest entrance to the northeast 

entrance (the corresponding side of the long side of the actual building is 

approximately 45 meters long). We conclude that this difference in scale between the 

two reference systems provided more value to the Luddy VR users for devising 

strategies to improve their performance. There is currently no scale typology in the 

DVL-FW that could capture this difference in a meaningful way. Further, Luddy Hall, 

with its naturally geospatial layout, waypoints, stairs, rooms, and floors, was more 

easily identified and read as a map, whereas the kidney and buzzer in the RUI VR 

study provided comparatively sparse orientation.  

Second, Luddy VR users were given an additional visualization type in the form of a 

(bar) graph with their completion times per task, allowing them to quickly identify 

patterns, trends, and maxima as well as minima in their performance via a more 

abstract data visualization. In RUI VR, on the other hand, the completion time was not 

explicitly shown, and could only be inferred from the time stamp on the time slider. 

This level of abstraction needed for visually non-explicit information probably yielded a 

disadvantage for VR Tabletop and VR Standup users, while 2D Desktop users could 

identify the longest and shortest completion time in their intro session to the Reflective 

phase rather easily (see also Figure 54E and F, where 12 and 13 out of 14 users 

correctly identified the shortest and longest completion time of the best-performing 

subject, respectively).  
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Graphic symbols and graphic variables: Both Reflective phase implementations had 

a set of graphic symbols and graphic variables in common. Mainly, both used volumes 

(spheres, cubes) to encode the user’s position (and the position of their hands) as well 

as the location of the tissue block over time (RUI Reflective) and the task destinations 

(Luddy VR). For the implementation of the more traditional 2D visualizations (line 

graph and bar graph), lines were used in both studies (though just for 2D Desktop in 

the RUI VR experiment). On a side note, we consider the bars in bar graphs as lines, 

because only the length (not the width) is used to encode a data record as the graphic 

variable size. Both implementations also make use of linguistic symbols, specifically 

text, to denote task numbers (both), completion times (2D Desktop in RUI VR, all of 

Luddy VR), and parts of the interactive legends. In terms of graphic variables, there 

were differences. Both Reflective phases used position (3D for VR visualizations and 

2D for line graph and bar graph) and color hue to encode the input device visualized 

(RUI VR) or the navigation method chosen (Luddy VR). In RUI VR, however, we also 

used color saturation to indicate the angular difference between the tissue and target 

blocks (and thus the rotation accuracy), while in Luddy VR, we used the graphic 

variable of size to encode the user’s performance metric (completion time) in the bar 

graph. Finally, in Luddy VR, we employed velocity in two ways: when visualizing the 

vector between a user’s teleporting start and end point, and to show head and hand 

movement direction when replaying a dataset in RUI VR. All graphic symbol and 

graphic variable encodings were received and understood well based on mid- and post-

questionnaire data. Generally, we conclude that the 3D trajectories that made up the 

Reflective phase visualizations illustrated the performance for virtual navigation tasks 

better, because trajectories through virtual environments are a type of data overlay 
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familiar to most people through navigation systems in cars, on phones, and in video 

games. The trajectories for the head and hand movements in the RUI Reflective study 

may have been too abstract for users to derive viable strategies.  

Interactions: Over the two studies, we implemented four interaction types: filter, 

navigate, animate, and link and brush. Filter was implemented in both studies: The 

user could turn parts of the data overlay on and off via checkboxes that they could 

click via a 3D pointer. By default, all checkboxes were checked and all data was 

visible. The checkboxes were part of the interactive legend. Likewise, users could 

navigate across the visualization by virtue of wearing VR equipment, allowing them to 

see the data from different angles. Link and brush and animate/replay were unique 

to Luddy VR and RUI Reflective, respectively. Luddy VR users could brush over a bar 

in their graph of completion times and then saw the corresponding menu entry 

highlighted that let them turn on and off the underlying data for that task. RUI 

Reflective users could play back their own data at different speeds by using the time 

slider, effectively creating an animation of their own movement and tissue block 

manipulation over time. However, it appears that this interaction type was less useful 

than expected.  

It may have been hard for users to identify and select a playback speed that yielded 

insights about their completion times to them, and offering predetermined playback 

speeds may have been a better design choice. Additionally, playback for a task worked 

better when other data was turned off, thus avoiding clutter, and the steps needed to 

hide all data, jump to the time stamp of a task, and then playing it back at an 

insightful speed, required a series of actions on the user’s part that may have been 
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challenging for many users. Also, we assume that the animate/replay interactivity did 

not help users identify completion times properly, because completion time had to be 

derived from looking at time stamps, not directly via an auxiliary visualization like in 

Luddy VR. Link and brush for Luddy VR users, on the other hand, created a visual 

connection between the bar graph and the dot density map of their trajectories, thus 

allowing the user to evaluate their performance with this additional, derived data 

rather than having to infer or compute their performance from time stamps like in RUI 

VR.  

7.10.2 Design implications 

After its proposed extension, the DVL-FW interaction typology contains 24 types. 

While it is not possible to implement and validate this typology in its completeness 

within one dissertation, we argue that we were able to highlight the advantages and 

disadvantages of each of the four types for their application for VR visualizations 

(filter, link and brush, navigate, animate/replay). This section contains design 

implications derived from our implementation of the four types, and section 8.1 

provides recommendations for future work on how these specific interactive types can 

be leveraged to help users improve VR performance.  

The filter, link and brush, and navigate interactions proved to be valuable for Luddy 

VR users, who were able to achieve faster completion times than their counterparts in 

the control cohort. While we did not find that the Reflective phase helped RUI 

Reflective experiment users (in the VR setups) perform better than control users in the 

Plateau phase, we did find significant effects by metrics in the Reflective phase on 

performance in the Plateau phase and satisfaction regardless. These effects could help 
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identify ways to nudge users to a better performance by tweaking parts of the 

Reflective phase. Subsequently, we describe which of these insights are actionable for 

the future design of interventions using the DVL-FW.  

We identified one metric that had both a favorable effect on rotation accuracy and 

satisfaction: head rotation around the y-axis. Similarly, we found that many 

variables that describe the Reflective phase experience made the entire VR experiment 

less satisfying for subjects, among them total time spent, time slider usage, and time 

without the base map, which also had a detrimental effect on position and rotation 

accuracy (see Table 10). What are potential design tweaks to improve performance 

while maintaining user satisfaction? It appears that a beneficial improvement would 

be to bring the data to the user, e.g., by scaling down the reference system of the 

visualization (like for Luddy VR), thus minimizing the need for covering a wide area 

with their entire body or even just their hands while allowing them to turn around on 

the spot and inspect the data from various perspectives. Given that more body 

movement (measured by convex hull for the hands as well as the number of clusters 

for the right hand) had an adverse effect on accuracy measures, minimizing the user’s 

need for movement might not only save them time but also energy and prevent 

cognitive fatigue. A more refined Reflective phase would thus encourage the user to 

make use of their head as a "camera" to inspect the data from different angles in a 3D 

perspective while not moving their entire body around. At the same time, this could 

also shorten the time spent in this analytical mode. 

Additionally, we determined that less aggregation leads to happier users. This means 

that another good tweak would be to avoid aggregated data views where possible, 
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especially at the start of the Reflective phase where all the data was turned on by 

default. Of course, it is also possible that the visualization type, together with the 

aggregated data view, was the confusing and less satisfying element for many RUI 

Reflective users, many of whom may have felt overwhelmed with initial display of data. 

Had they been presented with a 2D dot density map instead of the 3D + VR version of 

our experiment, an aggregated view could have revealed more patterns (like the 2D dot 

density maps in Figure 46).  

It would also be possible to design a Reflective phase for RUI VR as a mix of VR 

visualizations and traditional, 2D visualizations such as a bar graph for completion 

times over trials (like for Luddy VR). The 3D dot density map with some visual 

encoding is a more advanced visualization type, and even if users extracted insights 

from their own data, it may not have been supporting their goal to act on these 

insights accordingly. This would also relieve the user from the need to derive 

performance variables such as the completion time while trying to memorize more 

successful strategies.  

Yet another, more far-reaching change would be to more closely entangle any 

reflection about one’s own data with the actual task hand rather than outsourcing it 

to a separate Reflective phase application. Immediate visual feedback could be given 

when the cube-matching task is done to encode accuracy, possible following some of 

the design goals of fluid interaction, such as “provide immediate visual feedback on 

interaction” (81). Additionally, because the tasks were performed in VR, haptic 

feedback could be used to indicate position and rotation accuracy during the tasks. 

Most VR controllers have vibration motors built in so that, e.g., the current accuracy 
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could be mapped to the actuators inside the controller. This would shorten the user’s 

time in the Reflective phase and provide a new environment for visual feedback 

altogether.  

7.10.3 Limitations 

We acknowledge several limitations to these studies.  

First, while both RUI Reflective and Luddy VR contained a Reflective phase, the overall 

study design was slightly different. In Luddy VR, both cohorts completed the same set 

of tasks twice, with the intervention in between. In RUI VR, the Ramp-Up phase 

contained a different set of tasks than the Plateau phase, so it was not possible to 

compute within-subject improvements for these users.  

Second, the types of task between the two studies were different (cube-matching vs. 

movement), which influenced what information users needed to retrieve from the 

Reflective phase. For example, RUI Reflective users had to identify ways to balance 

their efforts between position accuracy (with a focus on arm movements) and rotation 

accuracy (with a focus on hand movements), all without neglecting completion time. 

Luddy VR users, on the other hand, experienced a more mediated interaction in that 

they could move their entire body through the virtual space via simple button clicks 

and touches. As a result, the navigation methods demanded less physical movement 

and input. Likewise, data from the RUI Reflective cube-matching tasks was richer as 

users did not only have to take position into account when determining new strategies 

but also rotation. As a result, improving performance for RUI Reflective users more 

challenging. The data visualization of each user’s behavior was not only in VR and in 

three-dimensional space but also interactive. This would have presented a challenge to 
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any user, regardless of expertise with visualizations and VR, be it due to lack of 

expertise, spatial ability, confidence in virtual environments, or data visualization 

literacy. This is highlighted by the fact that users in the Desktop setup (with the 

simple, static line graph) were able to significantly improve their position and rotation 

accuracy while feeling more satisfied using a rather simple visualization.  

Third, for the experiment cohort in the RUI Reflective study, participation in this study 

was a lot more time-consuming than for the control cohort, potentially yielding a 

benefit to the latter. From reading the study information sheet at the beginning of the 

pre-questionnaire to answering the final question of the post-questionnaire, RUI 

Reflective subjects spent an average of 3627.21 seconds (SD = 789.38 seconds) or 

~60.45 minutes on the entire experience versus an average of 1811.67 seconds (SD = 

840.1 seconds) or ~30.19 minutes for control subjects. This resulted in an average 

difference of slightly over half an hour between these two cohorts.  

This is in stark contrast to Luddy VR, where experiment users needed 3624.82 

seconds (SD = 717.5 seconds) or ~60.41 minutes versus 2608.41 seconds (SD = 

428.46 seconds) or ~43.47 minutes for the control cohort (on average). This resulted in 

an average difference of just under 17 minutes, which is only ~57% of the time 

difference between the cohorts in the RUI Reflective study.  

Subjects who went through the Reflective phase in the RUI Reflective study put on and 

then took off the HMD four different times, switching between HMD and the laptop 

with the instructions every time. In the future, the research design for similar 

interventions could be more streamlined.  



248 

 

Finally, while the telemetry data from the HMD and VR controllers allowed us to model 

a user’s behavior for our data analysis, it did not allow us to draw conclusions about 

what parts of the data visualization in the Reflective phase the user was actually 

focused on. More recent developments in eye-tracking inside the HMD and foveated 

rendering might lead to the availability of advanced telemetry data in the future so 

that researchers can derive more meaningful and detailed information about a user’s 

gaze than simplistic head orientation values.  

7.10.4 Next steps 

In further studies, we aim to explore a variety of potential adjustments for the 

Reflective phase by testing more interaction types included in the Reflective phase. For 

example, rather than presenting users with premade visualizations with minimal 

possible adjustments, users could create their own visualizations based on available 

data records, obtained either through telemetry (head and hand position, rotation) or 

computed at runtime (completion time, accuracy metrics, and spatial data such as 

velocity of tissue block placement). We could support this by implementing the new 

DVL-FW interaction type visualize/encode. Additionally, users could annotate their 

data, or compare their own data with someone else’s side by side via arranged and 

coordinated views. Additionally, the tasks for these studies are rather abstract and 

thus might resemble real-world VR training and coaching tasks only superficially. As a 

result, it could be interesting to design a real-world user study with professionals 

from an application domain (such as the medical or engineering fields). We expand on 

potential future work in section 8.3.   
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8. Discussion 

In this dissertation, we proposed an extension of the current DVL-FW interaction 

typology from nine to 24 interaction types. These types were gathered from reviewing 

literature from a variety of disciplines (among them information visualization, 

computer science, statistics, geography, and human-computer interaction). We then 

implemented four interaction types in two user studies. Additionally, we presented 

research and development efforts for HuBMAP, an effort to create an atlas of the 

healthy, adult human body at single-cell resolution. Specifically, we validated the 

design of the RUI as an application running on a 2D interface against two VR 

implementations, which we also tested in a user study. All three user studies involved 

a series of performance metrics, gathered via telemetry and questionnaires. In Table 

14, Table 15, and Table 16, we listed all the research questions and hypotheses in this 

dissertation and added marks to denote whether they were confirmed or rejected.  
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Table 14. Hypotheses and results for RUI VR (HuBMAP) user study (✓ = confirmed,  = 

rejected) 

Hypothesis Description Result 

H1a Users in VR Tabletop and VR Standup achieve significantly 
higher position accuracy than users in 2D Desktop. 

 
H1b Users in VR Tabletop and VR Standup achieve significantly 

higher rotation accuracy than users in 2D Desktop. 
✓ 

H1c Users in VR Tabletop and VR Standup have significantly 
lower completion times than users in 2D Desktop. 

✓ 
H2a We do not expect any major bias for any setup in any 

dimension. 
✓ 

H2b We expect the error to be greatest for the 2D Desktop setup 
due to its restricted input devices and limited viewing 

positions. 

✓ 

H3a More complex tasks lead to lower position accuracy for all 
setups. 

 
H3b More complex tasks lead to lower rotation accuracy for all 

setups. 
✓ 

H3c More complex tasks lead to higher completion times for all 
setups. 

 
H4 VR users need a lower number of tasks to plateau than 2D 

Desktop users. 
✓ 

H5 In all setups, the more time users spend on a task, the higher 
position and rotation accuracy they achieve.  

 
H6a Users in both VR setups are more satisfied with their 

performance than 2D Desktop users.  
✓ 

H6b There is no significant difference in user satisfaction between 
VR Standup and VR Tabletop users.  

✓ 
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Table 15. Hypotheses and results for RUI Reflective user study (✓ = confirmed,  = 

rejected) 

Hypothesis Description Result 

H1 H1: There will be a significant difference in completion time 
and accuracy for Ramp-up and Plateau phases between 

control (without Reflective phase) and experiment group (with 
Reflective phase). However, this will only occur for the VR 
Standup and VR Tabletop setups; the Desktop users will not 
be able to gain significant gains in accuracy and completion 
time over their peers. 

 

H2 H2: Users in the experiment group that previously spread out 
across a larger area in the Ramp-Up phase will use less space 
and concentrate on an overall smaller work area in the 

Plateau phase. They will also use less space in the Plateau 
phase on average than the control group. 

 

H3a H3a: Most users will use the time slider to scroll through 

around 1000% (=10 times) the time span of their dataset. 
 

H3b H3b: The most selected location for the play head of the slider 
will be towards the very end of the timecode in the dataset. 

 

H3c H3c: Users will spend the majority of time with the kidney 
turned on as the presence of a reference organ is highly 
useful to understand the data overlay. Many users may not 

be able to conceptualize the potential value of having the 

kidney turned off while inspecting their data to remove 
clutter. The kidney is turned on by default. 

✓ 

H4a H4a: More distance traveled has a negative effect completion 

times in the Plateau phase. 
 

H4b H4b: More distance traveled has a negative effect on distance 
(higher position accuracy) in the Plateau phase. 

✓ 
H4c H4c: More head rotations have a negative effect on completion 

times in the Plateau phase.  
 

H4d H4d: More head rotations have a negative effect on distance 
(higher position accuracy) in the Plateau phase. This may be 
due to high-performing users feeling more comfortable in 3D 
environments in general, and VR specifically, enabling them 
to move around their own data more fluently in the first 

place. 

 

  



252 

 

Hypothesis Description Result 

H5a H5a: There is a significant negative correlation between task 
score in the mid-questionnaire and position accuracy in the 

Plateau phase in terms of distance. 

✓ 

H5b H5b(1): There is a significant correlation between task score 
in the mid-questionnaire and position accuracy in the Plateau 
phase in terms of median x-error. 

 

H5b(2): There is a significant correlation between task score 
in the mid-questionnaire and position accuracy in the Plateau 
phase in terms of median y-error. 

 

H5b(3): There is a significant correlation between task score 
in the mid-questionnaire and position accuracy in the Plateau 
phase in terms of median z-error. 

 

H5b(4): There is a significant correlation between task score 
in the mid-questionnaire and position accuracy in the Plateau 
phase in terms of median bias.  

✓ 

H5c H5c: There is a significant negative correlation between task 
score in the mid-questionnaire and rotation accuracy in the 
Plateau phase. 

 

H5d H5d: There is no significant negative correlation between task 
score in the mid-questionnaire and completion time in the 
Plateau phase. 

✓ 

H5e H5e: The majority of users agree or strongly agree that the 
subject shown to them in the Reflective phase was highly fast 

and accurate. 

✓ 
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Table 16. Hypotheses and results for Luddy VR user study (✓ = confirmed,  = rejected) 

Hypothesis Description Result 

H1 The experiment cohort achieves significantly lower completion 
times than the control cohort during VR Trial 2.   

✓ 
H2 The experiment cohort achieves significantly larger changes 

in completion times between trial 1 and trial 2. 
✓ 

H3 The experiment cohort achieves higher scores in the mid-
questionnaire than the control cohort. 

✓ 
H4a Subjects prefer teleporting when finalizing a task within sight 

of the start position.   
✓ 

H4b Subjects prefer free-flying when finalizing a task out of sight 
of the start position 

✓ 
H4c Subjects prefer walking just as they finalize a task. 

 
H5 There will be no significant difference in satisfaction between 

the cohorts. 
✓ 
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In user study 1 (HuBMAP), we found that subjects in the two VR implementations 

outperformed 2D Desktop users in terms completion times, rotation accuracy, and 

satisfaction; however, we found no significant difference for position accuracy, see 

Table 14 (beyond a significant error in the x-dimension, likely due to the predefined 

virtual camera locations through which the user can view the reference organ from 

different perspectives). We were further able to validate the 2D Desktop 

implementation of the RUI by identifying the median position accuracy of the 2D 

Desktop users as 1.3 mm given the kidney height on the laptop display after an 

average of 8 identical tasks in a sequence. Likewise, with an average completion time 

of 22.6 seconds and a median rotation accuracy of 5.89 degrees, we met 

performance benchmarks set during the initial conceptualization of the RUI (one 

minute per registration, 1-2 mm accuracy). The next step could be to collect 

interaction logs from users in the HuBMAP consortium who use the recently deployed 

RUI version 1.5 (65). Performing user studies with this version that is currently being 

used to TMCs across the country and the globe could not only provide “in the wild” 

numbers but also identify frequently used features, allowing us to recommend more 

developer time for improving other key aspects of the interface, such as metadata 

entry and sematic annotation via collision detection, in addition to the 3D interaction 

we tested in our user study.  

The two user studies with the Reflective phases yielded mixed results. For the RUI VR 

Reflective study, see Table 15, while we did not find significant differences in 

performance between the control and experiment cohorts for the two VR setups, we 

found a significant difference in rotation accuracy between the cohorts for 2D Desktop 

setup after users in the experiment cohort were shown a line graph of their 
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performance so far. Further, we identified the total degrees of head rotations around 

the y-axis to have a favorable effect on satisfaction and rotation accuracy, in addition 

to a range of other behavioral metrics that had significant effects on the post-

intervention performance. For the Luddy Reflective phase study, on the other hand, we 

found most of our hypotheses confirmed (see Table 16) while identifying significant 

differences not only in completion time between the cohorts during the second trial 

but also for the scores in the mid-questionnaire. In this questionnaire, we tested how 

well users remembered the topology of the virtual building as well as the number and 

destination of tasks.  

All 152 subjects across the three studies used the same VR equipment consisting of 

an HTC Vive HMD and VR controllers. The VR applications were made in Unity 2019.4 

(running on an Alienware 17 R4 using Windows 10), and selected scripts were made 

available alongside videos detailing the study procedures and all parts of the VR 

experiences. These materials have been collected in the Supporting Information and 

can also be viewed on GitHub (https://github.com/andreasbueckle/bueckle-

dissertation-supporting-information).  

8.1 Recommendations 

Based on our findings, we conclude that one of the strongest benefits of VR is the high 

satisfaction for users. In the RUI VR user study, users in both VR setups were more 

satisfied with their performance than 2D Desktop users (Table 14, H6a), and there was 

no significant difference between those VR users who were standing and those who 

were sitting (Table 14, H6b). Likewise, in the Luddy VR user study, we found that 

users reported high satisfaction (m = 4.29 on a 5-point Likert scale) regardless of 

https://github.com/andreasbueckle/bueckle-dissertation-supporting-information
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information
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whether they experienced a Reflective phase (Table 16, H5). Designers of VR 

visualizations can thus expect a lot of good will and curiosity from experienced and 

novice VR users alike.  

Further, for VR visualizations, we recommend to bring the data to the user based on 

the different success rates of the Reflective phases of the RUI Reflective and Luddy VR 

studies. The scale of the Reflective phase visualization was a major difference between 

the RUI Reflective and the Luddy VR study, where the RUI Reflective dot density map 

was at a 1:1 scale, while the Luddy VR dot density map was contained in a miniature 

version of the building at a 1:30 scale, allowing the user to gain an overview of the 

dataset much easier while still being able to inspect various subsets in an organic way 

simply by moving their head around and inside the virtual building.  

Likewise, less aggregation makes happier users. In RUI reflective, we found that 

high time slider values (indicating that the user inspected data towards the end of the 

dataset with many tasks visible at once) had a negative effect on satisfaction. Because 

the time slider showed data based on the position of the play head, the graphic 

symbols for later tasks were shown on top of earlier tasks unless they were turned off 

first. Encouraging the user to focus on a smaller number of tasks from the beginning 

(by not showing all the data at once) seems like a good strategy to not overwhelm the 

user. This is an assumption that would need to be confirmed in further studies.  

Lastly, VR offers a unique opportunity to mix 2D and 3D visualizations in a natural 

interface that the user can interact with using their hands. In Luddy VR, we showed 

that a 2D bar graph of completion times helped the user identify their fastest and 

slowest performances and then inspect trajectories accordingly to derive new 
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strategies for the second round of tasks. This setup shows the user abstract data via 

a traditional, static data visualization on the one hand, and spatial data via VR on 

the other hand. This way, designers can utilize the most effective graphic variables 

such as position and length (59, 101) for abstract variables (such as, in our case, 

completion time) while still allowing the user to see, in 3D, the geospatial data that the 

abstract data is based on while making use of the interaction afforded by VR.  

A final note has to be written about the superb accuracy of the mouse as an input 

device. While 2D Desktop users lagged behind VR users in all performance metrics 

plus satisfaction, there were no significant differences in terms of position accuracy.  

8.2 Major challenges 

The application of VR for data visualization (as well as practical applications in a 

domain, such as tissue registration like we presented in chapter 5) poses a range of 

challenges.  

First, setting up and using VR equipment still requires a considerable amount of time. 

High-end VR HMDs with external tracking (such as the HTC Vive used here) need 

tracking stations. And even if these HMDs have inside-out tracking, i.e., they have 

tracking sensors built in and do not rely on external stations, still have to be 

connected to a computer with a capable graphics cards to run VR applications at the 

desired resolution and frame rate. This results in a setup time and cost that far 

exceeds what is typically needed for a 2D setup. There is an increasing number of 

consumer-grade VR standalone HMDs without such hardware and setup 

requirements, e.g., the Oculus Quest 2 (https://www.oculus.com/quest-2/), see also 

our listing of Modern VR hardware in the Supporting Information). These devices trade 

https://www.oculus.com/quest-2/
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in setup time for performance, but the user’s transition between the physical and the 

virtual environment still provides a bottleneck for time that is not present in 2D 

Desktop applications. This is especially salient regarding the integration of VR into 

rigid existing workflows. For instance, in section 5.1.1, we presented a range of SOPs 

that capture steps needed to indicate the spatial origin of tissue samples. 

Implementing a VR version of the RUI into these procedures would necessitate 

increased time and training investment into an already rigid workflow.  

Second, VR, by its very nature, requires space. In order to function as an input device, 

VR HMDs and controllers need to be moved. While the mouse as a 2D input device can 

be used on a fraction of the surface of a table (think about how small a mousepad is), 

VR spaces are typically around three by three meters (around nine by nine feet) large. 

While VR platforms typically provide visual indicators to warn users that come too 

close to the edge of their play space, a human facilitator is needed in research settings 

to ensure the physical safety of the user. This would be especially important in an 

environment that may not always be suited for wearing a VR HMD (such as wet bench 

labs with expensive equipment for anatomical procedures and medical imaging).  

Third, another challenge for VR is cost, although there exists an ever-increasing 

amount of hardware for many budgets. The aforementioned Oculus Quest 2, at a price 

of $299 for the 64 GB version, is the latest addition to the growing roster of standalone 

VR HMDs that could accelerate the transition of VR to a mass medium. In section 8.3, 

we elaborate on future planned studies involving the Oculus Quest 2 and planned 

improvements to our user VR study methodology.  
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With regards to using data visualizations to improve performance in VR tasks, there 

are limitations to what be meaningfully visualized in VR. Both the cube-matching and 

movement tasks in this dissertation yielded spatial data by design, thus allowing us to 

create the Reflective phases as VR visualizations without major computation of derived 

variables in the first place. However, tasks that are executed on 2D screens, cognitive 

tests on questionnaires, or similarly abstract data such as infection rates for a 

disease, stock market values, and health data would require a spatial component via 

mapping to then be visualized to VR. Our research does not cover these cases.  

Additionally, while our user studies focused on measuring whether the user was able 

to derive strategies for better performance in the second set of tasks, optimization may 

not always be the main goal of such interventions. For example, a user going through 

VR training for a machine assembly task may not be interested in performing their 

completion time or accuracy but rather improve memorization by repetition. For these 

cases, inspecting one’s own data in an interactive VR visualization yields limited 

results. While the data we collected in this dissertation was quantitative, in future 

studies, it could be illuminating to capture insights based on spoken user feedback, 

e.g., via think-aloud methods or semi-structured interviews. 

Lastly, from a practical standpoint, using VR requires more physical involvement than 

using 2D interfaces, due to the fact that more senses are engaged and more body 

parts are used to generate input. At this point, it is hard to imagine how an 8-hour 

work day for a data analyst would like were they only to use VR for creating and 

reading visualization.  
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8.3 Future Work 

We presented design recommendations and challenges for implementing VR 

visualizations to improve user performance based on the user studies in this 

dissertation. The research and development of these experiments was guided by the 

type of user to be tested eventually: members of the general population, without major 

concentrations in terms of data visualization literacy or expertise in data-related fields. 

One of the major paths we are envisioning for future work are thus domain-specific 

applications. For example, we deployed the RUI user study in chapter 5 mostly to 

students at Indiana University and residents of Bloomington, IN, and not the wet 

bench staff, medical imaging specialists, and biologists that would usually register 

tissue blocks with the RUI. This would present an ideal real-world use case for a study 

with a smaller sample size and a strong focus on acquiring qualitative as well as 

quantitative data, which could help us better gauge the advantages and disadvantages 

of VR for this specific task across a variety of labs.  

Further, for improving VR performance through data visualization, it could be 

enlightening to design VR training with a Reflective phase component in cooperation 

with an organization such as the Indiana University Office of Capital Planning and 

Facilities (CPF, https://cpf.iu.edu/index.html) or the Naval Surface Warfare Center, 

Crane Division (https://www.navsea.navy.mil/Home/Warfare-Centers/NSWC-

Crane/Who-We-Are/). Working with these entities could allow us to design tasks that 

are closer to what real-world workers need to learn, perform, and optimize, and could 

yield more insight needs of practical nature. For example, in our user studies, subjects 

had to derive strategies to improve accuracy and completion time for simple matching 

tasks, which are unlikely to occur in high-stakes training scenarios. For instance, 

https://cpf.iu.edu/index.html
https://www.navsea.navy.mil/Home/Warfare-Centers/NSWC-Crane/Who-We-Are/
https://www.navsea.navy.mil/Home/Warfare-Centers/NSWC-Crane/Who-We-Are/
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when training an enlisted navy sailor for using a radar device to perform 

reconnaissance of an area of operation, a VR version of the sailor’s environment could 

be built to practice a range of scenarios. A mix of 2D and 3D visualizations in VR 

could then help the sailor assess their performance post-session. However, developing 

these kinds of tasks with useful results necessitates insights into how these trainings 

are designed, run, and evaluated, necessitating a cooperation with an organization 

outside of the university lab holding mutual research and development interests.  

Another application domain for VR visualizations could be architecture, engineering, 

and construction, where stakeholders such as university officials, facility managers, 

and other administrative staff may be interested in seeing different layers of data. In 

fact, the Luddy VR study in this dissertation was inspired by initial conversations with 

university staff about the use of data visualization to optimize energy usage in IU 

buildings with advanced sensors. The basic layer, like in our Luddy VR user study, 

would be the building as the base map with a dot density map or 3D heatmap of 

occupancy, visualized through the DVL-FW. This would provide palpable advantages 

over 2D visualizations as occupancy data could be seen in its spatial context. Next, 

sensor data for electricity and temperature could be added as an additional layer. This 

would allow the stakeholders to derive conclusions about the interplay between the 

number of users in the building, their trajectories, energy consumption, and, last but 

not least, cost. Of course, a mix of 2D and 3D visualizations where appropriate could 

optimize the stakeholder’s gain of actionable insights into building management while 

utilizing the known strength of bar graphs, line graphs, and scatter graphs. For 

example, an automation engineer may be interested to learn which rooms are the least 

used, at what time of day, and at what occupancy levels in the rest of the building. A 
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fire marshal may want to know the most used trajectories across a building to 

optimize safety inspections. Lastly, a third and final layer could be simulations. If, for 

example, a building is to be substantially renovated or expanded, an architect may not 

only want to view the 3D model with the planned modifications but also a projection of 

future usage. They could then optimize the location of power outlets, staircases, even 

windows for optimal distribution of light across the new or renewed parts of the 

building. Naturally, building and testing applications like this requires lots of data and 

telemetry already in place, as well as buy-in from stakeholders. Those types of 

research and development for real-world usage scenarios in increasingly data-driven 

fields hold a lot of potential, and could be especially promising for mixing 2D and 3D 

visualizations inside a VR application for an “information-rich virtual environment” 

(38).  

Another potential stream of future projects could be dedicated to innovating VR user 

study methodology. All our user studies were executed in a lab setting under 

supervision of a researcher. Due to the low penetration rate of VR across the 

consumer market, many users do not currently have VR gear in their homes that 

would allow researchers to easily deploy VR user studies to subjects remotely. 

Further, because VR requires specialized hardware and dedicated physical space, the 

subject’s home environment plays a role in determining the integrity of how the 

experiment is executed across many users in as many living conditions. While there 

only is limited research on remote VR data collection (144), we envision that with the 

growing presence of standalone VR HMDs on the market, user studies “in the wild” 

(162) could become an increasingly promising field, scaling up the number of subjects 

while reducing the amount of hours spent on face-to-face interaction by researchers 
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and collecting data from within a variety of living conditions. Further, the ever-larger 

presence of web-based VR frameworks, such as A-Frame (192) and WebXR (210), 

could greatly simplify the pipeline through which users can access VR content. Ideally, 

accessing any VR application should be as easy as clicking on a link in a web browser. 

Integrating these new VR deployment frameworks into research designs could yield 

valuable contributions to how VR user studies are planned, run, and evaluated.  

Finally, a future goal is to further advance the DVL-FW interaction typology by 

implementing more interaction types for VR. For example, the newly added 

visualize/encode or annotate types could be prime example of useful interactions in 

VR visualizations. In our user studies, the visual encoding was predetermined during 

development, and subjects were unable to add pictorial or linguistic symbols to mark 

important features in the data. However, with the structure already in place, e.g., the 

2D panel for the filter menus, adding an additional panel to set visual encodings 

would be a feasible feature. Likewise, users could place annotation marks into 3D 

space simply by placing them there with their controllers. Visualize/encode and 

annotate are substantial interaction types for data visualization and analysis, because 

they allow the user to customize the data display to suit the insight need currently in 

focus, and, in the case of annotate, to outsource insights from their memory to an 

external representation. It would then be interesting to compare implementations of 

these interaction types between setups, e.g., 2D screens and VR.  

Finally, other typologies of the DVL-FW, especially those for graphic symbols and 

graphic variables, provide fertile ground for more user studies. The four-page spread 

of graphic symbol and variable pairings put together by Börner (31) (p.36-39) presents 
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a range of combinations that are not applicable for visualizations that are static, 2D, 

or both. For example, the time-based, quantitative graphic variables of rhythm, 

velocity, and speed could be implemented in VR in a way that is not possible (or 

reasonable) in a scatter graph. Additionally, some graphic symbol and variable 

pairings in Börner’s book are blank, e.g., the combination curvature and volume or 

angle and surface. Adding a third dimension makes these pairings feasible, and having 

three axes for rotation in VR would allow for a richer design space specifically for angle 

and curvature.  

In conclusion, there is a large space of potential research avenues following the 

studies presented in this dissertation. One of the greatest challenges and, at the same 

time, most promising features of VR visualizations is their novelty. This novelty can 

result in an urge to visualize data in VR that would best be represented with more 

traditional means. Harmonizing the aesthetic appeal of colorful, complex data 

visualizations with the cognitive limits of the human mind and the physical strain of 

VR on its users is a paramount research challenge for the foreseeable future. At the 

same time, it will be fascinating to observe what kinds of user studies become possible 

with an ever-increasing amount of hardware options, used by ever-more diverse sets of 

users, in real-world scenarios as more and more organizations and individuals 

embrace this engaging medium.     
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Glossary 

6 degrees of freedom (6-DoF): Indicates freedom of movement of a body in 3D 

space in position and rotation. Usually, each movement along or around the x, y, 

and z axes of a virtual environment has a name; right (along x axis towards +∞), 

left (along x axis towards -∞), up (along y axis towards +∞, down (along y axis 

towards -∞), forward (along z axis towards +∞), back ((along z axis towards -∞). For 

rotation: pitch (around x axis), yaw (around y axis), roll (around z axis). 

Architecture, engineering, and construction (AEC): Umbrella term for creating, 

maintaining, and improving the built environment through the collaboration of 

three industries. 

Data records: observations in a dataset. 

Data Visualization Literacy Framework (DVL-FW): A structure of data 

visualization with a range of types (such as insight needs, graphic encodings, and 

interactions) to interpret, create, and teach data visualizations. 

Field of view (FOV): The amount of 3D space in front of a camera captured on the 

screen, expressed as an angle in degrees. Commonly used to describe hardware 

properties of head-mounted displays (HMDs) or other display media. 

Graphic symbols are of geometric, linguistic, or pictorial nature, and are used to 

visualize data records and variables. 

Graphic variables, e.g., size, color, position, are properties of graphic symbols and 

can be used to encode data records and variables visually. 
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Head-mounted display (HMD)” A piece of hardware consisting of glasses with two 

built-in screens to present a stereoscopic view of a virtual environment. Usually 

attached to a user’s head with a strap. 

Level of detail (LOD): Indicates the complexity of a given 3D model depending on a 

multitude of factors (such as distance to the user, graphics settings, and graphics 

capability), usually for performance optimization in computer graphics. 

Reference system: the basemap of a visualization, e.g., an x-y coordinate plane or 

a geographic map. 

Software development kit (SDK): A collection of tools to allow individual creators 

to build high-level applications on top of a more low-level underlying software 

architecture. 

User interface (UI): A collection of (graphical) elements with which a user can 

enact change or retrieve information from on the application, often in the form of 

buttons, sliders, text fields, etc. 

Virtual reality (VR): A collection of hardware and software that allows for 

immersing a user in virtual environments through the use of a tracked head-

mounted display (HMD), often with the user of controllers.  

Visualization type: refers to tables, charts, graphs, maps, trees, and networks.  

VR controller: A handheld device allowing user input through buttons and, 

depending on the model, a touchpad or an analog stick. 
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Windows, icons, menus, pointers (WIMP): A user interface paradigm popularized 

in the 1980s, optimized for 2D screens, using windows, icons, menus, and 

pointers. 
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Image Sources 

If images in figures were taken from scholarly papers, citations were added in the 

captions or the text surrounding the figure in question. Otherwise, sources were listed 

below.  

Figure 6 

• A: 

https://cdn.landfallnavigation.com/media/catalog/product/cache/1/image/9d

f78eab33525d08d6e5fb8d27136e95/4/0/400_.jpg  

• B: 

https://cdn.landfallnavigation.com/media/catalog/product/cache/1/image/9d

f78eab33525d08d6e5fb8d27136e95/2/5/25664_.jpg  

Figure 9 

• A: https://cdn.arstechnica.net/wp-content/uploads/2015/04/Engelbart-68-

demo_0-2-640x426.jpg  

• B: 

https://upload.wikimedia.org/wikipedia/commons/2/2b/Douglas_Engelbart%

27s_prototype_mouse_-_Computer_History_Museum.jpg  

• C: https://invention.si.edu/sites/default/files/blog-hintz-eric-2018-12-10-

chord-keyset-mouse.jpg  

Figure 10 

https://cdn.landfallnavigation.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/4/0/400_.jpg
https://cdn.landfallnavigation.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/4/0/400_.jpg
https://cdn.landfallnavigation.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/2/5/25664_.jpg
https://cdn.landfallnavigation.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/2/5/25664_.jpg
https://cdn.arstechnica.net/wp-content/uploads/2015/04/Engelbart-68-demo_0-2-640x426.jpg
https://cdn.arstechnica.net/wp-content/uploads/2015/04/Engelbart-68-demo_0-2-640x426.jpg
https://upload.wikimedia.org/wikipedia/commons/2/2b/Douglas_Engelbart%27s_prototype_mouse_-_Computer_History_Museum.jpg
https://upload.wikimedia.org/wikipedia/commons/2/2b/Douglas_Engelbart%27s_prototype_mouse_-_Computer_History_Museum.jpg
https://invention.si.edu/sites/default/files/blog-hintz-eric-2018-12-10-chord-keyset-mouse.jpg
https://invention.si.edu/sites/default/files/blog-hintz-eric-2018-12-10-chord-keyset-mouse.jpg
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• https://help.irisvr.com/hc/article_attachments/360067694094/Viewpoints_In

_VR_IrisVR.png  

Figure 11 

• https://www.youtube.com/watch?v=3mRI1hu9Y3w  

Figure 12 

• A: https://store-images.s-

microsoft.com/image/apps.43055.14303655336501012.2beb08d9-395e-453b-

b5e3-0d4ac24d9d15.1208c626-fca0-4653-8be7-

78aacd968001?w=672&h=378&q=80&mode=letterbox&background=%23FFE4E

4E4&format=jpg  

• B: https://cdn.mos.cms.futurecdn.net/C9oP55pgEzHCJegQAhyL3R.jpg  

Figure 13 

• https://www.youtube.com/watch?v=jxZe2r3opKY  

Figure 14 

• https://i.ytimg.com/vi/iqXxqV7haoU/maxresdefault.jpg  

Figure 16 

• A: https://i.ytimg.com/vi/tpv3hEfmB34/maxresdefault.jpg  

https://help.irisvr.com/hc/article_attachments/360067694094/Viewpoints_In_VR_IrisVR.png
https://help.irisvr.com/hc/article_attachments/360067694094/Viewpoints_In_VR_IrisVR.png
https://www.youtube.com/watch?v=3mRI1hu9Y3w
https://store-images.s-microsoft.com/image/apps.43055.14303655336501012.2beb08d9-395e-453b-b5e3-0d4ac24d9d15.1208c626-fca0-4653-8be7-78aacd968001?w=672&h=378&q=80&mode=letterbox&background=%23FFE4E4E4&format=jpg
https://store-images.s-microsoft.com/image/apps.43055.14303655336501012.2beb08d9-395e-453b-b5e3-0d4ac24d9d15.1208c626-fca0-4653-8be7-78aacd968001?w=672&h=378&q=80&mode=letterbox&background=%23FFE4E4E4&format=jpg
https://store-images.s-microsoft.com/image/apps.43055.14303655336501012.2beb08d9-395e-453b-b5e3-0d4ac24d9d15.1208c626-fca0-4653-8be7-78aacd968001?w=672&h=378&q=80&mode=letterbox&background=%23FFE4E4E4&format=jpg
https://store-images.s-microsoft.com/image/apps.43055.14303655336501012.2beb08d9-395e-453b-b5e3-0d4ac24d9d15.1208c626-fca0-4653-8be7-78aacd968001?w=672&h=378&q=80&mode=letterbox&background=%23FFE4E4E4&format=jpg
https://store-images.s-microsoft.com/image/apps.43055.14303655336501012.2beb08d9-395e-453b-b5e3-0d4ac24d9d15.1208c626-fca0-4653-8be7-78aacd968001?w=672&h=378&q=80&mode=letterbox&background=%23FFE4E4E4&format=jpg
https://cdn.mos.cms.futurecdn.net/C9oP55pgEzHCJegQAhyL3R.jpg
https://www.youtube.com/watch?v=jxZe2r3opKY
https://i.ytimg.com/vi/iqXxqV7haoU/maxresdefault.jpg
https://i.ytimg.com/vi/tpv3hEfmB34/maxresdefault.jpg
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• B: 

https://i.pinimg.com/originals/fb/c2/28/fbc228cdfeb606d7ff7a56d7b809e735

.jpg  

Figure 17 

• https://cdn.arstechnica.net/wp-content/uploads/2016/04/Screenshot-99.png  

Figure 18 

• https://www.youtube.com/watch?v=F4S-YmzLfsE  

Figure 19 

• https://razinghel.com/wp-content/uploads/2016/11/production-

1280x768.jpg  

Figure 21 

• https://www.youtube.com/watch?v=nIfZu1clbRg  

 

  

https://i.pinimg.com/originals/fb/c2/28/fbc228cdfeb606d7ff7a56d7b809e735.jpg
https://i.pinimg.com/originals/fb/c2/28/fbc228cdfeb606d7ff7a56d7b809e735.jpg
https://cdn.arstechnica.net/wp-content/uploads/2016/04/Screenshot-99.png
https://www.youtube.com/watch?v=F4S-YmzLfsE
https://razinghel.com/wp-content/uploads/2016/11/production-1280x768.jpg
https://razinghel.com/wp-content/uploads/2016/11/production-1280x768.jpg
https://www.youtube.com/watch?v=nIfZu1clbRg
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Supporting Information 

User study 1: RUI (IRB #1910331127)  

Study information sheet  

INDIANA UNIVERSITY STUDY INFORMATION SHEET FOR 

Virtual Reality vs. Desktop Registration User Interface (IRB # 1910331127) 

You are invited to participate in a research study of virtual reality (VR) vs. a more 

traditional 2D (“Desktop”) interface.  You were selected as a possible subject because 

you are 18+ years old.  Please read this form and ask any questions you may have 

before agreeing to be in the study.  

The study is being conducted by Dr. Katy Borner (katy@indiana.edu) and Andreas 

Bueckle (abueckle@indiana.edu) from the Luddy School of Informatics, Computing, 

and Engineering at Indiana University, and Kilian Buehling (kilian.buehling@tu-

dresden.de) from the Technical University of Dresden in Germany. It is funded by the 

National Institutes of Health under OT2OD026671.  

STUDY PURPOSE 

The purpose of this study is to explore how users interact with and align 3D objects 

with each other. We want to know if there are differences in task completion time, 

accuracy, and user satisfaction between three conditions: a traditional “Desktop” 

interface, a VR interface where the user is standing and walking around (“VR 

Standup”), and a VR interface where the user is sitting at a desk (“VR Tabletop”). To 

that end, we are collecting data on timing and task accuracy alongside behavioral 

metrics (such as hand and head positions in VR as well as mouse position in Desktop) 

mailto:katy@indiana.edu
mailto:abueckle@indiana.edu
mailto:kilian.buehling@tu-dresden.de
mailto:kilian.buehling@tu-dresden.de
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and user inputs such as button presses. We will also ask questions about the 

usability of the tools used across the three conditions. Please note that you have to be 

18+ years old. People with an epilepsy diagnosis are not eligible.  

NUMBER OF PEOPLE TAKING PART IN THE STUDY 

If you agree to participate, you will be one of ~60 subjects who will be participating in 

this research. 

PROCEDURES FOR THE STUDY 

If you agree to be in the study, you will come to our research site during a previously 

agreed-upon timeslot. Then you will complete a pre-questionnaire to gather basic 

demographic information as well as information about your current usage and comfort 

with data visualizations, VR, and 3D environments. Subsequently, you will be 

assigned to one of our three conditions as per the researcher’s discretion: Desktop 

(computer screen), VR Standup, or VR Tabletop. You will then be given instructions on 

how to use your tool, and then presented with a set of tasks. Finally, you will be given 

a post-questionnaire where you can share ideas for improvement. The study will take 

approximately 30-45 minutes. You will be recorded with audio and video, and we will 

log your actions in the physical world and in the virtual space for later analysis.  

RISKS AND BENEFITS OF TAKING PART IN THE STUDY 

The risks of participating in this research are discomfort answering questions about 

unfamiliar visualizations. Further, some users can experience discomfort from using 

VR. Some users of VR headsets report motion sickness. Please be aware that you can 
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terminate your participation in the study at any time. You may also tell the 

investigator if you need to take a break.  

CONFIDENTIALITY 

Efforts will be made to keep your personal information confidential.  We cannot 

guarantee absolute confidentiality.  Your personal information may be disclosed if 

required by law.  Your identity will be held in confidence in reports in which the study 

may be published and databases in which results may be stored. 

Organizations that may inspect and/or copy your research records for quality 

assurance and data analysis include groups such as the study investigator and 

his/her research associates, the Indiana University Institutional Review Board or its 

designees, the study sponsor, and (as allowed by law) state or federal agencies, 

specifically the Office for Human Research Protections (OHRP), the National Institutes 

of Health (NIH), etc., who may need to access your research records.  

All research funded by the NIH is automatically granted a Certificate of Confidentiality. 

Information on these protections are described in the following paragraphs. Some of 

the details may sound odd in the context of this user study. However, we still want to 

fully inform you about these protections.  

 

For the protection of your privacy, this research is covered by a Certificate of 

Confidentiality from the National Institutes of Health.  The researchers may not 

disclose or use any information, documents, or specimens that could identify you in 
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any civil, criminal, administrative, legislative, or other legal proceeding, unless you 

consent to it.  Information, documents, or specimens protected by this Certificate may 

be disclosed to someone who is not connected with the research: 

• if there is a federal, state, or local law that requires disclosure (such as to report 
child abuse or communicable diseases);  

• if you consent to the disclosure, including for your medical treatment;  

• if it is used for other scientific research in a way that is allowed by the federal 
regulations that protect research subjects; 

• for the purpose of auditing or program evaluation by the government or funding 

agency;  

A Certificate of Confidentiality does not prevent you from voluntarily releasing 

information about yourself.  If you want your research information released to an 

insurer, medical care provider, or any other person not connected with the research, 

you must provide consent to allow the researchers to release it. 

FUTURE USE 

Information collected from you for this study may be used for future research studies 

or shared with other researchers for future research.  If this happens, information 

which could identify you will be removed before any information or specimens are 

shared. Since identifying information will be removed, we will not ask for your 

additional consent.     

PAYMENT 

Upon completion of your participation in the study, you will receive a $5 Amazon.com 

gift card.  

CONTACTS FOR QUESTIONS OR PROBLEMS 
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For questions about the study, please contact researcher Andreas Bueckle at 

abueckle@indiana.edu. For questions about your rights as a research participant or to 

discuss problems, complaints or concerns about a research study, or to obtain 

information, or offer input, contact the IU Human Subjects Office at 812-856-4242 or 

irb@iu.edu. 

VOLUNTARY NATURE OF THIS STUDY 

Taking part in this study is voluntary. You may choose not to take part or may leave 

the study at any time. Leaving the study will not result in any penalty or loss of 

benefits to which you are entitled. Your decision whether or not to participate in this 

study will not affect your current or future relations with the Luddy School of 

Informatics, Computing, and Engineering. 

Data collection instruments  

Qualtrics survey: https://github.com/cns-iu/rui-tissue-registration  

Recruitment materials  

Email 

Subject line: Virtual Reality User Study Needs Participants - $5 Amazon Gift Card 

 

Hello! 

For a user study investigating 3D alignment capability in virtual reality and 2D 

screens, we would like to ask for your participation in a user study in 

Bloomington. Your participation should take you about 30-45 minutes. You will 

mailto:abueckle@indiana.edu
https://github.com/cns-iu/rui-tissue-registration
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receive a $5 Amazon gift card upon completion. For more information, please see the 

attached study information sheet (SIS).   

We encourage you to share this survey with anyone who you may think could be 

interested in participating. You can sign up for the study under this link: 

[INSERT LINK TO (IF NEEDED) + SHORT DESCRIPTION OF SCHEDULING INTERFACE] 

About this study: This research is funded by the National Institutes of Health (NIH) 

grant #OT2OD026671, and has been approved under #1910331127 by the 

Institutional Review Board at Indiana University Bloomington. For questions about the 

study, please contact researcher Andreas Bueckle at abueckle@indiana.edu. For 

questions about your rights as a research participant or to discuss problems, 

complaints or concerns about a research study, or to obtain information, or offer 

input, contact the IU Human Subjects Office at 812-856-4242. 

We thank you in advance for your time and contribution to our study. 

Best wishes, 

Andreas Bueckle, Katy Börner, Kilian Bühling (research team) 

 [ATTACH STUDY INFORMATION SHEET] 

Social media 

Facebook (lab account): 

We are looking for participants in a user study on 3D alignment in virtual reality (VR) 

and 2D. The entire study takes place in Bloomington. Payment: $5 Amazon gift card 

mailto:abueckle@indiana.edu
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for ~30-45 minutes of your time. If you are interested, please contact Andreas Bueckle 

at abueckle@indiana.edu. Please note that you have to be 18+. People with an epilepsy 

diagnosis are not eligible.  

This study has approved under IRB #1910331127 by IU’s Human Subjects Office. 

Please see this study information sheet for more info: 

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT LINK TO SIS HERE] 

Facebook (personal account): 

Hello Indiana friends! I am looking for participants in a user study about virtual reality 

and 2D (for my dissertation). $5 Amazon gift card for ~30-45 minutes of your time in 

Bloomington. DM me for details.  

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT LINK TO SIS HERE] 

[INSERT PHOTO OF VR GEAR] 

 

Twitter: (lab account): 
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Participants wanted for study on virtual reality (VR) in Bloomington. $5 Amazon gift 

card. Takes 30-45 mins. Email or DM Andreas at abueckle@indiana.edu. Study 

information sheet: 

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT LINK TO SIS HERE] 

[INSERT PHOTO OF VR GEAR] 

Snapchat (personal account): 

Looking for VR research participants for my dissertation. $5 Amazon gift card for 30-

45 mins of your time. Message me for details. 

[(IF NEEDED) INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT PHOTO OF VR GEAR] 

Instagram (personal account): 

Looking for VR research participants for my dissertation. $5 Amazon gift card for 30-

45 mins of your time. Message me for details. 

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT PHOTO OF VR GEAR] 

Generic social media post: 
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Looking for VR research participants for my dissertation. $5 Amazon gift card for 30-

45 mins of your time. Message [INSERT CORRECT SOCIAL MEDIA HANDLE] for 

details. 

[(IF NEEDED) INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT PHOTO OF VR GEAR] 

Verbal script 

We are looking for participants in a user study on 3D alignment in virtual reality (VR) 

and 2D screens. Payment: $5 Amazon gift card for ~30-45 minutes of your time. This 

study has approved under IRB #1910331127 by IU’s Human Subjects Office. If you 

want, I can send you more information. 

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE + SIS if desired]  
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User study 2: RUI Reflective (IRB #1910331127)  

Study information sheet  

INDIANA UNIVERSITY STUDY INFORMATION SHEET FOR 

Virtual Reality vs. Desktop Registration User Interface with Reflective Phase VR 

Intervention (IRB # 1910331127, Amendment 004) 

You are invited to participate in a research study of virtual reality (VR) vs. a more 

traditional 2D (“Desktop”) interface.  You were selected as a possible subject because 

you are 18+ years old, and because you have not participated in this study previously.  

Please read this form and ask any questions you may have before agreeing to be in the 

study.  

The study is being conducted by Dr. Katy Borner (katy@indiana.edu) and Andreas 

Bueckle (abueckle@indiana.edu) from the Luddy School of Informatics, Computing, 

and Engineering at Indiana University, and Kilian Buehling (kilian.buehling@tu-

dresden.de) from the Technical University of Dresden in Germany. It is funded by the 

National Institutes of Health under OT2OD026671.  

STUDY PURPOSE 

The purpose of this study is to explore how users manipulate 3D objects and then 

optimize their behavior based on visualizations of their own data in VR. We want to 

know if there are differences in task completion time, accuracy, and user satisfaction 

between two cohorts: a control cohort that performs all the tasks in one go, and an 

experiment cohort that gets to inspect data of their own actions in VR before 

mailto:katy@indiana.edu
mailto:abueckle@indiana.edu
mailto:kilian.buehling@tu-dresden.de
mailto:kilian.buehling@tu-dresden.de
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completing the second round of tasks (“Reflective Phase”). In this call for participants, 

we aim to recruit subjects for the experiment cohort only.  

Additionally, we assign our subjects to one out of three conditions: a traditional 

“Desktop” interface, a VR interface where the user is standing and walking around 

(“VR Standup”), and a VR interface where the user is sitting at a desk (“VR Tabletop”). 

To that end, we are collecting data on timing and task accuracy alongside behavioral 

metrics (such as hand and head positions in VR as well as mouse position in Desktop) 

and user inputs such as button presses. We will also ask questions about the 

usability of the tools used across the three conditions. Please note that you have to be 

18+ years old. People with an epilepsy diagnosis are not eligible.  

PAYMENT 

Upon completion of your participation in the study, you will receive $20 in 

Amazon.com gift cards.  

NUMBER OF PEOPLE TAKING PART IN THE STUDY 

If you agree to participate, you will be one of ~42 subjects who will be participating in 

this research. 

PROCEDURES FOR THE STUDY 

If you agree to be in the study, you will be handed a surgical mask upon arrival at the 

research site as needed and asked to wash your hands before the experiment. Further 

safety precautions may need to be implemented as needed, pending policy changes 

from IU, the Luddy School of Informatics, Computing, and Engineering, or other 

entities.  
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If you agree to be in the study, you will come to our research site during a previously 

agreed-upon timeslot. Then you will complete a pre-questionnaire to gather basic 

demographic information as well as information about your current usage and comfort 

with data visualizations, VR, and 3D environments. Subsequently, you will be 

assigned to one of our three conditions as per the researcher’s discretion: Desktop 

(computer screen), VR Standup, or VR Tabletop. You will then be given instructions on 

how to use your tool, and then be presented with a set of tasks plus a brief 

intervention (“Reflective Phase”) in VR. Finally, you will be given a post-questionnaire 

where you can share ideas for improvement. The study will take approximately 45 to 

75 minutes. You will be recorded with audio and video, and we will log your actions in 

the physical world and in the virtual space for later analysis.  

RISKS AND BENEFITS OF TAKING PART IN THE STUDY 

The risks of participating in this research involve discomfort answering questions 

about unfamiliar visualizations. Further, some users can experience discomfort from 

using VR. Some users of VR headsets report motion sickness. Please be aware that 

you can terminate your participation in the study at any time. You may also tell the 

investigator if you need to take a break.  

CONFIDENTIALITY 

Efforts will be made to keep your personal information confidential.  We cannot 

guarantee absolute confidentiality.  Your personal information may be disclosed if 

required by law.  Your identity will be held in confidence in reports in which the study 

may be published and databases in which results may be stored. 
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Organizations that may inspect and/or copy your research records for quality 

assurance and data analysis include groups such as the study investigator and 

his/her research associates, the Indiana University Institutional Review Board or its 

designees, the study sponsor, and (as allowed by law) state or federal agencies, 

specifically the Office for Human Research Protections (OHRP), the National Institutes 

of Health (NIH), etc., who may need to access your research records.  

All research funded by the NIH is automatically granted a Certificate of Confidentiality. 

Information on these protections are described in the following paragraphs. Some of 

the details may sound odd in the context of this user study. However, we still want to 

fully inform you about these protections.  

For the protection of your privacy, this research is covered by a Certificate of 

Confidentiality from the National Institutes of Health.  The researchers may not 

disclose or use any information, documents, or specimens that could identify you in 

any civil, criminal, administrative, legislative, or other legal proceeding, unless you 

consent to it.  Information, documents, or specimens protected by this Certificate may 

be disclosed to someone who is not connected with the research: 

• if there is a federal, state, or local law that requires disclosure (such as to 
report child abuse or communicable diseases);  

• if you consent to the disclosure, including for your medical treatment;  
• if it is used for other scientific research in a way that is allowed by the 

federal regulations that protect research subjects; 
• for the purpose of auditing or program evaluation by the government or 

funding agency.    
 

A Certificate of Confidentiality does not prevent you from voluntarily releasing 

information about yourself.  If you want your research information released to an 
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insurer, medical care provider, or any other person not connected with the research, 

you must provide consent to allow the researchers to release it. 

FUTURE USE 

Information collected from you for this study may be used for future research studies 

or shared with other researchers for future research.  If this happens, information 

which could identify you will be removed before any information or specimens are 

shared. Since identifying information will be removed, we will not ask for your 

additional consent.   

CONTACTS FOR QUESTIONS OR PROBLEMS 

For questions about the study, please contact researcher Andreas Bueckle at 

abueckle@indiana.edu. For questions about your rights as a research participant or to 

discuss problems, complaints or concerns about a research study, or to obtain 

information, or offer input, contact the IU Human Subjects Office at 812-856-4242 or 

irb@iu.edu. 

VOLUNTARY NATURE OF THIS STUDY 

Taking part in this study is voluntary. You may choose not to take part or may leave 

the study at any time. Leaving the study will not result in any penalty or loss of 

benefits to which you are entitled. Your decision whether or not to participate in this 

study will not affect your current or future relations with the Luddy School of 

Informatics, Computing, and Engineering. 

mailto:abueckle@indiana.edu
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Data collection instruments  

Qualtrics survey: https://github.com/andreasbueckle/bueckle-dissertation-

supporting-information/tree/main/rui_vr_reflective  

Recruitment materials  

Email 

Subject line: Seeking Participants for a New Virtual Reality Study - $20 Amazon 

Gift Card 

Hello! 

We are looking for participants in a user study about interactive data visualization in 

virtual reality (VR). You will manipulate 3D objects in VR or on a laptop and then see if 

you can improve your behavior for the second round of tasks by inspecting your own 

data using a VR headset.  

Compensation: 

You will receive a $20 Amazon.com gift card upon completion. 

Location:  

Collaboration Space #4026 in Luddy Hall on the IU Bloomington campus.  

How to sign up: 

Please follow this link to enter your information: 

https://iu.co1.qualtrics.com/jfe/form/SV_0eXoWGhB9Una6sR  

https://github.com/andreasbueckle/bueckle-dissertation-supporting-information/tree/main/rui_vr_reflective
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information/tree/main/rui_vr_reflective
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Duration:  

Your participation should take you ~45-75 minutes. 

Eligibility: 

You must be 18+. 

People with an epilepsy diagnosis are not eligible. 

People who participated in our recent user study on 3D alignment abilities in VR and 

on laptops are not eligible.  

For direct questions, contact Andreas Bueckle (abueckle@indiana.edu).   

Please share this survey with anyone who could be interested. Precautions will be 

taken to create a safe and sanitary research environment. For more information, 

please see the attached study information sheet (SIS).  

Thank you in advance for your time and contribution to our study! 

Andreas Bueckle, Katy Börner, Kilian Bühling 

[ATTACH STUDY INFORMATION SHEET] 

Social media 

Personal accounts 

Facebook: 

Hello Indiana friends! I am looking for participants in another user study about virtual 

reality and 2D (for my dissertation). $20 in Amazon.com gift cards for ~45-75 minutes 

of your time in Bloomington.  

If you are interested, please follow this link for more information: 
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[INSERT LINK TO SCHEDULING INTERFACE] 

Of course, precautions will be taken to create a safe and sanitary research 

environment. 

You can also DM me for details. Please note that if you participated in my most recent 

VR study (you know who you are), you’ll have to sit this one out.  

See you soon! 

Snapchat: 

Looking for VR research participants for my dissertation. $20 in Amazon.com gift 

cards for ~45-75 mins of your time. Message me for details. 

[(IF NEEDED) INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 

[INSERT PHOTO OF VR GEAR] 

[ADD AS NEEDED: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 

Instagram: 

Looking for VR research participants for my dissertation$20 in Amazon.com gift cards 

for ~45-75 mins of your time. Message me for details. 

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE] 
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[INSERT PHOTO OF VR GEAR] 

[ADD AS NEEDED: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 

Lab accounts 

Facebook: 

We are looking for participants in a user study on 3D alignment in virtual reality (VR) 

and 2D. Payment: $20 in Amazon.com gift cards for ~45-75 minutes of your time in 

Luddy Hall in Bloomington, IN. If you are interested, please follow this link to provide 

your information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

Please note that if you participated in our recent study, you’ll have to sit this one out.  

For direct questions, email Andreas Bueckle (abueckle@indiana.edu).  

Precautions will be taken to create a safe and sanitary research environment. Please 

note that you have to be 18+. People with an epilepsy diagnosis are not eligible.  

This study has been approved under IRB #1910331127 by IU’s Human Subjects 

Office. 
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Twitter: 

Participants wanted for study on virtual reality (VR) in Bloomington. $20 in 

Amazon.com gift cards. Takes ~45-75 mins. If you are interested, please follow this 

link to provide your information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

For questions, email or DM Andreas at abueckle@indiana.edu.   

Instagram: 

Participants wanted for study on virtual reality (VR) in Bloomington. $20 in 

Amazon.com gift cards. Takes ~45-75 mins. If you are interested, please follow this 

link to provide your information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

For questions, email or DM Andreas at abueckle@indiana.edu.  

Generic social media post: 

[Statement of intent for user study involving VR] 

[Payment, duration, location] 

[scheduling interface + link to SIS as needed] 

[Request to reach out to social media handle or email address for further questions] 
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[insert photo as needed] 

[add as needed: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 

Verbal script 

We are looking for participants in a user study on 3D alignment in virtual reality (VR) 

and 2D screens with a VR intervention called “Reflective Phase”. Payment: $20 in 

Amazon.com gift cards for ~45-75 minutes of your time. If you want, I can send you 

more information. 

[INSERT LINK + SHORT DESCRIPTION TO SCHEDULING INTERFACE + SIS if desired] 

[ADD AS NEEDED: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet. This 

study has been approved under IRB #1910331127 by IU’s Human Subjects Office.]  
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User study 3: Luddy Hall VR (IRB #1911941428)  

Study information sheet  

INDIANA UNIVERSITY STUDY INFORMATION SHEET FOR 

Luddy Hall VR Navigation User Study (IRB #1911941428) 

You are invited to participate in a research study of navigation in virtual reality (VR).  

You were selected as a possible subject because you are 18+ years old. Please note 

that subjects with an epilepsy diagnosis are not eligible. Please read this form and ask 

any questions you may have before agreeing to be in the study.  

The study is being conducted by Andreas Bueckle (abueckle@indiana.edu), Dr. Patrick 

Shih (patshih@indiana.edu), and Dr. Katy Borner (katy@indiana.edu) from the Luddy 

School of Informatics, Computing, and Engineering at Indiana University.   

STUDY PURPOSE 

The purpose of this study is to explore how users navigate through a three-

dimensional model of Luddy Hall on IU campus. We want to know if there are 

differences in completion time, task accuracy, and user satisfaction between a group 

of subjects who repeat the same set of navigation tasks twice (control) and a group of 

subjects that does so with an interventional treatment in-between (experiment). 

Additionally, we aim to understand what kinds of data visualizations can help users 

improve their own navigational performance in VR. To that end, we are collecting data 

on timing and task accuracy while also asking questions about the usability of the 

navigation methods presented in this user study.  
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NUMBER OF PEOPLE TAKING PART IN THE STUDY 

If you agree to participate, you will be one of ~68 subjects who will participate in this 

research. 

PROCEDURES FOR THE STUDY 

If you agree to be in the study, you will be handed a surgical mask upon arrival at the 

research site (if needed) and asked to wash your hands before the experiment. Further 

safety precautions may need to be implemented, pending policy changes from IU, the 

Luddy School of Informatics, Computing, and Engineering, or other entities.  

You will come to our research site during a previously agreed upon timeslot. Then, you 

will complete a pre-questionnaire to gather basic demographic data as well as 

information about your current usage and comfort with data visualizations, 3D 

applications, and VR. Subsequently, you will be given a VR headset and controllers. 

You will then receive instructions on how to use your tools and be presented with a set 

of tasks. If we select you for the control cohort, you will perform these tasks twice with 

a brief break in-between. If you are part of the experiment cohort, after the first part, 

we will show you a selection of data visualizations you generated with your movements 

in VR, and ask you questions about them while recording your answers, and then you 

will repeat the tasks. Finally, you will be presented with a post-questionnaire where 

you can share ideas for improvement. The study will take approximately 30-60 

minutes of your time. You will be recorded in audio and video for the remainder of the 

experiment, starting the moment you enter the VR experiment, and we will record your 

actions in the physical world and in the virtual space with video and audio.  
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PAYMENT 

Upon completion of your participation in the study, you will receive $20 in 

Amazon.com gift cards. In order to receive this payment, you need to complete the 

survey in its entirety.  

RISKS AND BENEFITS OF TAKING PART IN THE STUDY 

The risks of participating in this research are discomfort answering questions about 

unfamiliar visualizations. Further, some users can experience discomfort from using 

VR (such as motion sickness). You may also tell the investigator if you need to take a 

break.   

CONFIDENTIALITY 

Efforts will be made to keep your personal information confidential.  We cannot 

guarantee absolute confidentiality.  Your personal information may be disclosed if 

required by law.  Your identity will be held in confidence in reports in which the study 

may be published and databases in which results may be stored. 

Organizations that may inspect and/or copy your research records for quality 

assurance and data analysis include groups such as the study investigator and 

his/her research associates, the Indiana University Institutional Review Board or its 

designees, the study sponsor, and (as allowed by law) state or federal agencies, 

specifically the Office for Human Research Protections (OHRP), etc., who may need to 

access your research records.  

FUTURE USE 
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Information collected from you for this study may be used for future research studies 

or shared with other researchers for future research.  If this happens, information 

which could identify you will be removed before any information or specimens are 

shared.  Since identifying information will be removed, we will not ask for your 

additional consent.   

CONTACTS FOR QUESTIONS OR PROBLEMS 

For questions about the study, please contact researcher Andreas Bueckle at 

abueckle@indiana.edu. For questions about your rights as a research participant or to 

discuss problems, complaints or concerns about a research study, or to obtain 

information, or to offer input, contact the IU Human Subjects Office at 812-856-4242 

or irb@iu.edu. 

VOLUNTARY NATURE OF THIS STUDY 

Taking part in this study is voluntary. You may choose not to take part or may leave 

the study at any time. Your decision whether or not to participate in this study will not 

affect your current or future relations with the Luddy School of Informatics, 

Computing, and Engineering. 

Data collection instruments 

Qualtrics survey: https://github.com/andreasbueckle/bueckle-dissertation-

supporting-information/tree/main/luddy_vr_reflective  

https://github.com/andreasbueckle/bueckle-dissertation-supporting-information/tree/main/luddy_vr_reflective
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information/tree/main/luddy_vr_reflective
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Recruitment materials  

Email 

Subject line: Seeking Participants for a Luddy Hall Virtual Reality Navigation 

Study - $20 Amazon Gift Card 

Hello! 

We are again looking for participants in a virtual reality (VR) user study, this time 

about navigating buildings in VR. You traverse a virtual model of Luddy Hall on IU 

campus and perform various visualization-related tasks using a VR headset and 

controllers.   

Compensation: 

You will receive a $20 Amazon.com gift card upon completion. 

Location:  

Collaboration Space #4026 in Luddy Hall on the IU Bloomington campus.  

How to sign up: 

Please follow this link to enter your information:  

[INSERT LINK TO SCHEDULING INTERFACE]  

Duration:  

Your participation should take you ~30-60 minutes. 

Eligibility: 

You must be 18+. 
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People with an epilepsy diagnosis are not eligible. 

For direct questions, contact Andreas Bueckle (abueckle@indiana.edu).   

Please share this survey with anyone who could be interested. Precautions will be 

taken to create a safe and sanitary research environment. For more information, 

please see the attached study information sheet (SIS).  

Thank you in advance for your time and contribution to our study! 

Andreas Bueckle, Patrick Shih, Katy Börner 

[ATTACH STUDY INFORMATION SHEET] 

Email to previous participants 

This email is intended for subjects who participated in user study #1910331127 and 

who indicated that they would like to be contacted for future VR user studies. 

Subject line: Seeking Participants for a Luddy Hall Virtual Reality Navigation 

Study - $20 Amazon Gift Card 

Hello! 

I am contacting you, because you were a participant in my last virtual reality (VR) user 

study and indicated that you would be interested in future VR user studies as well. 

That moment is here!  

We are again looking for participants in a VR user study, this time about navigating 

buildings in VR. You traverse a virtual model of Luddy Hall on IU campus and perform 

various visualization-related tasks using a VR headset and controllers.   
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Compensation: 

You will again receive a $20 Amazon.com gift card upon completion. 

Location:  

Collaboration Space #4026 in Luddy Hall on the IU Bloomington campus (same 

location as last time).  

How to sign up: 

Please follow this link to enter your information:  

[INSERT LINK TO SCHEDULING INTERFACE]  

Duration:  

Your participation should take you ~30-60 minutes. 

Eligibility: 

You must be 18+. 

People with an epilepsy diagnosis are not eligible. 

For direct questions, contact Andreas Bueckle (abueckle@indiana.edu).   

Please share this survey with anyone who could be interested. Precautions will be 

taken to create a safe and sanitary research environment. For more information, 

please see the attached study information sheet (SIS).  

Thank you in advance for your time and contribution to our study!| 

Andreas Bueckle, Patrick Shih, Katy Börner 

[ATTACH STUDY INFORMATION SHEET] 
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Email to individuals who indicated interest in a previous study but did not 

participate 

This email is intended for subjects who signed up to participate in user study 

#1910331127 and who did not get to participate due to time constraints, or because the 

subject slots were already full by the time they signed up. We thus offer them 

participation in a user study with 

- The same risk level (minimal) 

- The same payment 

- Around the same time investment 

Subject line: Seeking Participants for a Luddy Hall Virtual Reality Navigation 

Study - $20 Amazon Gift Card 

Hello! 

I am contacting you, because you indicated interest in my last virtual reality (VR) user 

study (IRB #1910331127) and did not get into the subject pool as we were filled up 

before you could participate. Now, there is another chance for you to be a research 

subject for us, with the same payment and about the same time investment, see 

below.   

We are again looking for participants in a VR user study, this time about navigating 

buildings in VR. You traverse a virtual model of Luddy Hall on IU campus and perform 

various visualization-related tasks using a VR headset and controllers.   

Compensation: 

You will again receive a $20 Amazon.com gift card upon completion. 
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Location:  

Collaboration Space #4026 in Luddy Hall on the IU Bloomington campus [ADD AS 

NEEDED: (same location as last time)].  

How to sign up: 

Please follow this link to enter your information:  

[INSERT LINK TO SCHEDULING INTERFACE]  

Duration:  

Your participation should take you ~30-60 minutes. 

Eligibility: 

You must be 18+. 

People with an epilepsy diagnosis are not eligible. 

For direct questions, contact Andreas Bueckle (abueckle@indiana.edu).   

Please share this survey with anyone who could be interested. Precautions will be 

taken to create a safe and sanitary research environment. For more information, 

please see the attached study information sheet (SIS).  

Thank you in advance for your time and contribution to our study! 

Andreas Bueckle, Patrick Shih, Katy Börner 

[ATTACH STUDY INFORMATION SHEET] 
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Social media 

Personal accounts 

Facebook (personal account): 

Hello! One last time, I am looking for participants in yet another user study about 

virtual reality for my dissertation; this time it’s all about walking and flying through 

virtual buildings. $20 in Amazon.com gift cards for ~30-60 minutes of your time in 

Bloomington.  

If you are interested, please follow this link for more information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

[AS NEEDED: INSERT PHOTO OF VR GEAR] 

Of course, precautions will be taken to create a safe and sanitary research 

environment. 

You can also DM me for details (or email me at abueckle@indiana.edu). Everyone is 

eligible unless they are not 18 or have had an epilepsy diagnosis.  

See you soon! 

Snapchat: 

Looking for VR research participants for my dissertation. $20 in Amazon.com gift 

cards for ~30-60 mins of your time. Message me for details. 
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[INSERT LINK TO SCHEDULING INTERFACE] 

[AS NEEDED: INSERT PHOTO OF VR GEAR] 

[ADD AS NEEDED: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 

Instagram: 

Looking for VR research participants for my dissertation (it’s all about walking and 

flying through virtual buildings). $20 in Amazon.com gift cards for ~30-60 mins of 

your time. Message me for details. 

[INSERT LINK TO SCHEDULING INTERFACE] 

[AS NEEDED: INSERT PHOTO OF VR GEAR] 

[ADD AS NEEDED: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 

Lab accounts 

Facebook: 

We are looking for participants for a new user study on walking and flying through 

virtual buildings. Payment: $20 in Amazon.com gift cards for ~30-60 minutes of your 
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time in Luddy Hall in Bloomington, IN. If you are interested, please follow this link to 

provide your information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

Everyone is eligible unless they are not 18 or have had an epilepsy diagnosis. 

For direct questions, email Andreas Bueckle (abueckle@indiana.edu).  

Precautions will be taken to create a safe and sanitary research environment. Please 

note that you have to be 18+. People with an epilepsy diagnosis are not eligible.  

This study has been approved under IRB #1910331127 by IU’s Human Subjects 

Office. 

Twitter [WILL BE ADJUSTED AS NEEDED TO CONFORM TO CHARACTER 

LIMITATIONS]: 

Participants wanted for a new study about walking and flying through buildings in 

virtual reality (VR) in Bloomington. $20 in Amazon.com gift cards. Takes ~30-60 mins. 

If you are interested, please follow this link to provide your information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

For questions, email or DM Andreas at abueckle@indiana.edu.   

Instagram: 
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Participants wanted for a new study about walking and flying through buildings in 

virtual reality (VR) in Bloomington. $20 in Amazon.com gift cards. Takes ~30-60 mins. 

If you are interested, please follow this link to provide your information: 

[INSERT LINK TO SCHEDULING INTERFACE] 

For questions, email or DM Andreas at abueckle@indiana.edu.  

Generic social media post: 

[Statement of intent for user study involving VR] 

[Payment, duration, location] 

[scheduling interface + link to SIS as needed] 

[Request to reach out to social media handle or email address for further questions] 

[insert photo as needed] 

[add as needed: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 

Luddy Hall monitors 

[INSERT GRAPHIC/HEADER] 

Virtual Reality Study Needs Participants - $20 Amazon.com Gift Card 

We are looking for participants in a user study on navigation in virtual reality (VR).  
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Payment: $20 in Amazon.com gift cards for ~30-60 minutes of your time here in Luddy 

Hall.  

If interested, go to [INSERT LINK TO SCHEDULING INTERFACE] or scan the QR code 

below. Precautions will be taken to create a safe and sanitary research environment.  

Eligibility: You must be 18+. People with an epilepsy diagnosis are not eligible.   

If you have questions about your eligibility, please contact us at 

abueckle@indiana.edu.  

[INSERT QR CODE] 

[INSERT MORE GRAPHICS AS NEEDED] 

Verbal script 

We are looking for participants in a user study on navigation in 3D environments in 

virtual reality (VR). The entire study takes place in Luddy Hall on IU campus. 

Payment: $20 Amazon gift card for ~30-60 minutes of your time.  

[ADD AS NEEDED: This study has approved under IRB #1911941428 by IU’s Human 

Subjects Office.]  

If you want, I can send you more information. 

[INSERT LINK TO SCHEDULING INTERFACE + SIS as needed] 
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[ADD AS NEEDED: Precautions will be taken to create a safe and sanitary research 

environment. We will provide more information to you once you have signed up for a 

time slot. More information can also be found in the study information sheet.] 
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Technical walkthroughs and code for RUI and Luddy Hall VR user studies 

Video demos: https://github.com/andreasbueckle/bueckle-dissertation-supporting-

information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-

3  

Reflective phase:  

• RUI: https://github.com/andreasbueckle/bueckle-dissertation-supporting-

information#technical-walkthrough-for-rui-reflective-study  

• Luddy: https://github.com/andreasbueckle/bueckle-dissertation-supporting-

information#technical-walkthrough-for-luddy-vr-reflective-study  

Video demos of all VR applications used in this dissertation 

For chapter 5: https://github.com/cns-iu/rui-tissue-registration#video-demos-of-the-

three-setups  

For chapter 6: https://github.com/andreasbueckle/bueckle-dissertation-supporting-

information#video-demos-of-the-three-setups-used-in-the-rui-reflective-study-user-

study-2  

For chapter 7: https://github.com/andreasbueckle/bueckle-dissertation-supporting-

information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-

3  

https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-3
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-3
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-3
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#technical-walkthrough-for-rui-reflective-study
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#technical-walkthrough-for-rui-reflective-study
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#technical-walkthrough-for-luddy-vr-reflective-study
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#technical-walkthrough-for-luddy-vr-reflective-study
https://github.com/cns-iu/rui-tissue-registration#video-demos-of-the-three-setups
https://github.com/cns-iu/rui-tissue-registration#video-demos-of-the-three-setups
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-rui-reflective-study-user-study-2
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-rui-reflective-study-user-study-2
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-rui-reflective-study-user-study-2
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-3
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-3
https://github.com/andreasbueckle/bueckle-dissertation-supporting-information#video-demos-of-the-three-setups-used-in-the-luddy-vr-study-user-study-3
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Modern VR hardware 

Table 17. Overview of selected current consumer-grade VR HMDs with specs and 
supported interaction input as of 7/16/2021. The system used in this dissertation is 
bold. 
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