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Overview

« Data Visualizations of Science
« The Science of Data Visualization

* Open Challenges



1b15t Annual Meetng of the Associion of American Ggrapr;ers, Denver, CO.
April 5th - 9th, 2005 (First showing of Places & Spaces)

University of Miami, Miami, FL.
September 4 - December 11, 2014.

. I T F
Duke University, Durham, NC.
January 12 - April 10,2015

The David J. Sencer CDC Museum, Atlanta, GA.
January 25 - June 17, 2016.


http://scimaps.org/

Exhibit on Display at

University of Michigan
Aug 29-Nov 23, 2022

IU News Release

Debut activities
MIDAS, Sept 29-30

Library Reception, Sept 30

Dinner with Tim Utter
et al, Sept 30

http://scimaps.org



http://scimaps.org/
https://news.luddy.indiana.edu/story.html?story=Places-Spaces-Exhibit-Debuts-Macroscopes-at-University-of-Michigan%E2%80%99s-Clark-Library&_gl=1*wscxrv*_ga*NTc3MTg4OTcwLjE2NjE5NTgzNjE.*_ga_61CH0D2DQW*MTY2MzE2NTE4NS4zMi4xLjE2NjMxNjgyMTAuNDkuMC4w
https://midas.umich.edu/calendar/?trumbaEmbed=view%3devent%26eventid%3d161776626
https://www.lib.umich.edu/visit-and-study/events-and-exhibits/today-and-upcoming/science-maps-and-macroscopes

Places & Spaces: Mapping Science Exhibit

15t Decade (2005-2014)

Maps

Iteration | (2005) Iteration |1 (2006)

The Power of Maps The Power of Reference Systems

Iteration 111 (2007) Iteration IV (2008)

The Power of Forecasts Science Maps for Economic Decision Makers
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Iteration V (2009) Iteration VI (2010)
Stience Maps for Science Policy Makers Science Maps for Scholars

Iteration VII (2011) Iteration VI (2012)

Science Maps s Visual Interfaces to Digital Libraries
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Iteration IX(2013) Iteration X (2014)
Science Maps Showing Trends and Dynamics The Future of Science Mapping.
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Z”d Decade (2015-2024)

Macroscopes

Iteration XI (2015)

Macroscopes for Interacting with Science

Iteration X111 (2017)

Macroscopes for Playing with Scale

Iteration XII (2016)
Macroscopes for Making Sense of Science

Iteration XIV (2018)
Macroscopes for Ensuring our Well-being
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http://scimaps.org

100

MAPS
in large format, full color, and
high resolution.

43

MACROSCOPE MAKERS
including one whose job title is
“Truth and Beauty Operator.”

[W\\\\\\:

382

DISPLAY VENUES
from the Cannes Film Festival
to the World Economic Forum.

248

MAPMAKERS

from fields as disparate as art,
urban planning, engineering,
and the history of science.

20

MACROSCOPES
for touching all kinds of data.

354

PRESS ITEMS
including articles in Nature,
Science, USA Today, and Wired.



http://scimaps.org/

Map of Scientific Collaborations from 2005-2009

Computed Using Data from Elsevier's Scopus

VII.6 Stream of Scientific Collaborations Between World Cities - Olivier H. Beauchesne - 2012




Bruce W. Herr Il (Chalklabs & IU), Gully Burns (ISI),

The National Institutes of Health (NIH) is organized as a

David Newman (UCl), Edmund Talley (NIH)
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Topic modeling, a statistical technique

that automatically learns semantic
categories, was applied to assess projects in
terms used by researchers to describe their
work, without the biases of keywords or subject
headings. Grant similarities were derived from

their topic mixtures, and grants were then clustered

on a two-dimensional map using a force-directed
simulated annealing algorithm. This analysis creates an

interactive environment for assessing grant relevance to
research categories and to NIH Institutes in which grants

are localized.
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Cardiac Diseases Research ] (_Neural Circuits Research

An area of the map focused on cardio- Anarea of the map focused on neural

vascular function and dysfunction circuits, which shows the diversity of
Cardiac Failure (primarily funded by topics and NIH Institutes that
NHLBI) is topically clustered next to fund researchin this area, such as:

Stroke (NINDS), since these are the two Cardiorespiratory Regulation,

major medical emergencies associated
with ischemia, which results from a re-
stricted blood supply. Also localized in
this area are grants focused on Nitric
Oxide (NOS) Signaling, a major biochem-
ical pathway for vasodilation, and grants

‘on Hemodynamics, Sickle Cell Disease,

V.7 A Topic Map of NIH Grants 2007 - Bruce W.

and Aneurysms.

primarily funded by NHLBI; Visual
Processing, primarily funded by NEl;and
Epilepsy, primarily funded by NINDS.
For color coding, see legend in the

upper-leftinset.

National Cancer Institute (NCI)
TOP 10TOPICS
Oncology Clinical Trials

CancerTreatment

CancerTherapy
4 Carcinogenesis
Risk Factor Analysis

Cancer Chemotherapy

Metastasis

Leukemia

Prediction/Prognosis

0 Cancer Chemoprevention

National Institute of General
Medical Sciences (NIGMS)
TOP 10 TOPICS

I Bioactive Organic Synthesis.
2 Xeray Crystallography
3 Protein NMR

4 Computational Models

5 Yeast Biology

6 Metalloproteases

7 Enzymatic Mechanisms

8 Protein Complexes

9 Invertebrate/Zebrafish Genetics
10 Cell Division

National Heart, Lung,
and Blood Institute (NHLBI) »
TOP 10TOPICS =

1 Cardiac Failure

2 Pulmonary Injury

3 Genetic Linkage Analysis
4 Cardiovascular Disease
5 Atherosclerosis

& Hemostasls

7 Blood Pressure
& Asthma/ Allergic Airway Disease
9 Gene Association

10 Lipoproteins

National Institute of
Mental Health (NIMH)
TOP 10 TOPICS

1 Mood Disorders

2 schizophrenia

3 Behavioral Intervention Studies
4 Mental Health

5 Depression

6 Cognitive-Behavior Therapy

7 AIDS Prevention
§ Genetic Linkage Analysis
9 Adolescence

10 Childhood

Herr Il, Gully A.P.C. Burns, David Newman, and Edmund Talley - 2009



We are all familiar with traditional maps that shov the relationships between countries, provinces,

°
states, and cities. Similar exist between rescarch topics in
science. This allows us to map the structure of seience.

One of the first maps of science was developed at the Institute for Scientific Information over 30
yearsago. It identified 41 areas e from the citation patterns in 17,000 scientific papers.
That carly map was intriguing, but it didn't cover cnough of science to accurately define its structure.

The Social Sciences are the SmaHesl and
most diffuse of all the sciences.

serves as the link between Medical Sciences
(Psychiatry) and the Sacial Sciences.

serves as the link with Computer Science
and Mathematics.

is our starting point, the pulesl olan sciences. It lies at the outer edge of the map.
re applied sciences that draw upon
knowledge in Mathematics and Physics. Tnese three disciplines provide a good example of a
linear progression from one pure science (Mathematics) to another (Physics) through multiple
disciplines. Although applied, these disciplines are highly concentrated with distinct bands of
research communities that link them. Bands indicale interdisciplinary research

today. We have s d advanced visualization
software that make mapping of the structure of science possible. This galaxy-like map of science
d at Sandia National Laboratories using an advanced graph layout routine (VxOrd)
2002. Each dot in the galaxy
represents one of the 96,000 research communities active in science in 2002. A research communi
is a group of papers (9 on average) that are written on the same research tapic in a given year, Over
time, communities can be born, continue, split, merge, or die.

Research is highly concentrated in and
3 hese disciplines have faw, but very The map of science can be used as a tool for science trategy. This is the terrain in which

distinet, bands of research communities that link jonsand cate their scient Additional i ion about the

them. The thickness of these bands indicates an scientific and economic impact of cach research community allows policy makers to decide which

extensive amount of interdisciplinary research, arcasto explore, exploit, abandon, or ignore.

which suggests that the boundaries between

Physics and Chemistry are not as distinct as one

might assume.

We also envision the map as an educational tool. For children, the theoretical relationship between
areas of science can be replaced with a concrete map showing how math, physics, chemistry, biology
and social studies interact. For advanced students, areas of interest can be located and neighboring
areas can be explored,

Nanotechnology

Most research communities in
nanotechnology are concentrated in
and

However, many disciplines
in the Life and Medical Sciences also
have nanotechnology applications

Neuroscience

Psychiatry

. Bielogy 2 ; Proteomics
Radiology ) ¢
Research communities in proteomics
are centered in listry. In addition,
there is a heavy focus in the tools section
of chemistry, such as
The balance of the proteomics

. i : communities are widely dispersed among
Geﬂeﬁ:ﬂ g b Y Ve the Life and Medical Sciences.

Medicine

Oricology

The Life Sciences, including gy and
are less concentrated than
Chemistry or Physics. Bands of linking
research can be seen between the larger
areas in the Life Sciences; for instance
between Biology and Microb and
between Biology and Environmen

Pharmacogenon
immunology Pharmacogenomics is a relatively new
field with most of its activity in Medicine.
It also has many communiies in

and two communities in
the Social Sciences

The Medical Sciences include broad therapeutic = Infectious Disease

studies and targeted areas of Treatment (e.g. central

nanvous system, cardiology, gastroenterology, etc.)
Unlike Physics and Chemistry, the medical disciplines.
are more spread out, suggesting a more multi-
disciplinary approach to research. The transition into
Life Sciences (via Animal Science and Biochemistry)
is gradual

Biochemistry is very interesting in that it

is a large discipline that has visible links

to disciplines in many areas of the map
including Biclogy, Chemistry, Neuroscience,
and General Medicine. It is perhaps the
most interdisciplinary of the sciencas

1.10 The Structure of Science - Kevin W. Boyack and Richard Klavans - 2005




Impact The US Patent Hierarchy Prior Art

Patent and ientists and ety el " e
ven oy incus- g 4 A - = s i ; -
try oF use, proxi effect or product. Atthe. a a_ = . - = =
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15 levels deep. We displ three lavels (13 g 2

right in what might be considered a textual map of inventions.

i tally
by revealing any previous patents that might be similar in nature or
provide i invention. In this way we

pa ¥
it affects.

The patent on Goretex—a ightweight, durable synthetic fiver—is an
example of one th impos

the section | and the red

10 start along a time line from 1981 to 2006) point to the 130 categories
that contain 182 patents, from waterproof clothing to surgical cosmetic
implants, that mention Goretex as “prior art”

New i ideas from

cited as prior art for a patent on “geld nanoshells’ Gold naneshells area
new invention: tiny gold spheres (with a diameter ten million times smaller
than a human hair) ible in i
red ission of tumors in
par

categorles provided background for this invention.

" ining
any taxanamy, including the patent hierarchy. Cateqories are easier to
derstand, seareh, and maintain If

the category. The b charts, port

ofa gor
c be red d 10 be splic
when they get rague or

eliminate, add of revise—or how to revise them—in the complex, abstract
sociolinguistic spaces we partition into ontologies?

b

H adistanceto
prototype”: how much each patent differs from an idealized "protetype
patent”for that category. A measure like this can be based on statistics,
o ioht. The
mastly small bars s a good
rearganization; but one that has only two or three tall bars may mean
that only those few elements don't belong.

gl make y

11.8 Taxonomy Visualization of Patent Data - Katy Borner, Elisha F. Hardy, Bruce W. Herr Il, Todd Holloway, and W. Bradford Paley - 2006



Article Edit Activity
Aticles are size coded based on how frequently
they have been cdived from Feb. 6, 2001 o
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given o current and major edits
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111.8 Science-Related Wikipedian Activity - Bruce W. Herr 1l, Todd M. Holloway, Elisha F. Hardy, Katy Bérner, and Kevin Boyack - 2007
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VII.10 History of Science Fiction - Ward Shelley - 2011




Check out our Zoom Maps online!

VIL10

History of Science Fiction, by Warc

Visit scimaps.org and check out all our maps in stunning detail!




Iteration XI (2015) lteration Xl (2016)

Macroscopes for Interacting with Science Macroscopes for Making Sense of Science

Iteration XIII (2017) Iteration XIV (2018)

Macroscopes for Playing with Scale Macroscopes for Ensuring our Well-being

Iteration XV (2019) Iteration XVI (2020)

Macroscopes for Tracking the Flow of Resources Macroscopes for Harnessing the Power of Data

http://idemo.cns.iu.edu/macroscope-kiosk
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About Places & Spaces

Smelly Maps

Charting urban smellscapes

HathiTrust

Storehouse of knowledge

PLACES
SPACES

MAPPING SCIENCE

Excellence Networks
Publish or perish together

About macroscopes

FleetMon Explorer

Tracking the seven seas




About Places & Spaces

PLACES
SPACES

About macroscopes

Smelly Maps HathiTrust Excellence Networks FleetMon Explorer
Charting urban smellscapes Storehouse of knowledge Publish or perish together Tracking the seven seas
7 . X¢
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Smelly Maps — Daniele Quercia, Rossano Schifanella, and Luca Maria Aiello — 2015



About Places & Spaces . g:IA%CEESS& About macroscopes

MAPPING SCIENCE

The Cosmic Web Histography Megaregions of the US Science Paths

And the network behind it An interactive timeline Mapping commuter patterns The random impact rule

@O000e00



‘ » Play with Scale » Megaregions of the US -

T H E M E GA R E G I o N s O F T H E U s Explore the new geography of commuter connections in the US.

Tap to identify regions. Tap and hold to see a single location’s commuteshed.

Leaflet | Nelson & Rae CC BY 3.0

B = | This is the Roanoke (Raleigh) megaregion.

Megaregions of the US —Garrett Dash Nelson and Alasdair Rae — 2016



MAPPING SCIENCE

About Places & Spaces . gPIA%%%S& About macroscopes

Nucleocapsid protein

Opportunity Atlas Mapping Inequality Atlas of Surveillance Virus Explorer

Different zip codes, different outcomes Unequal by design One nation, under observation Bugs in the system

@OOO0OOO



Atlas Trilogy
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https://mitpress.mit.edu/books/atlas-forecasts
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Call for Macroscopes: 19t Iteration

What to Submit Review Process

Submissions will be reviewed and evaluated
by the exhibit advisory board (listed below)
* Title of macroscope in terms of their:

* Scientific rigor

* Value as a tool for data exploration

* Each entry needs to include:

* Author(s) name, email address, affiliation, mailing address

* Link to online site that features the macroscope tool or to  Ability to provide new, actionable insights
executable code * Relevance for a general audience
* Macroscope tool description (300 words max): user group
and needs served, data used, data analysis performed, Important Dates
visualization techniques applied, and main insights gained * Submissions due: Feb 15, 2023
o . * Notification to mapmakers: April 1, 2023
» References to relevant publications or online sites that «  Submit final entries: May 30, 2023

should be cited, links to related projects or works + lteration ready for display: August 31,

* Tell us about the impact your data visualization has had on 2023
public awareness, social policy, or political action. https://scimaps.org/call
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Atlas of Forecasts

Modeling and Mapping

Desirable Futures

Katy Borner

23
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Krot (JSTOR), Cazl Lagoze (Cornell University),
Richard Furuta (Texas A&M University), Vincent
Lariviére (Université du Québec 2 Montréal,
Canada), Adam Bly (CEO of SEED), Alex Wright
(author of Glut: Mastering Information Through The
Ages), and Mills Davis (Project0x.com).

Focused brainstorming workshops, organized
with collcagues between 2008 and 2012, contrib-

October 9-10, 2010: Modelling Knowledge Dynarics, The Vireual Knowledge

Studio, Amsterdam,

uted greatly to the discussion of research and devel-
opment (R&D) work that is contained in these
pages. A total of 16 such workshops were held on

a range of topics, including “How to Measure,

Map, and Dramatize Science,” “Mapping the
History and Philosophy of Science,” “Modcling
Knowledge Dynamics,” “Artists Envision Science &
Technology,” and “Plug-and-Play Macroscopes” (sce
group photos [below).

It may scem unwise to devote a major part of
one’s research time to writing a series of books for
readers who are unlikely to write papers or other-
wise cite these books in academic circles. And yet
it scems quite on target to cnable those who finance
science via tax dollars to benefit from the research
results—forfeiting the maximization of citation
counts via the production of rescarch papers. Many
others have taken this route, including the follow-
ing luminarics who have inspired my own journcy:
Jacques-Yves Cousteau, the French explorer and
rescarcher of the sea; David Attenborough, espe-

Augast 11-12, 2011: JSMF Workehop on Standards for Science Metrics,

Classifications, and Mapping, Indiana University, Bloomington, Indiana

cially with his Life on Earth and Living Planet scrics;
Paul Otlet, with his Universal Atlas or Encydopedia
Universalis Mundanewm; Stuart Brand, author of The
Whole World Catalsg; Richard Dawkins, famed for
his “Growing Up in the Universe” lectures; Al Gore
for his environmental efforts, as featured in the
Inconwenient Truth documentary; and Hans Rosling,
whose Gapminder effort gave rise to the motto, “Let
my dataset change your mindset.” It is my hope that
this A#as series joins in giving both inspiration and
encouragement to future science communicators.

Copyediting of the A#las was performed by
Gordana Jelisijevic; Alas layout and design by
Tracey Theriault, with many of the images specifi-
cally created for this book by Perla Matco-Lujan
and Samuel T. Mills; reference checks and format-
ting by Todd N. Theriault; and copyright acquisi-
tion by Samantha Hale, Brianna Marshall, Joseph
Shankweiler, and Michael P. Ginda. Other valued
contributions are acknowledged in the References
& Credits (page 178).

March 2526, 2015: Exploiting Big Data Semantics for Translational Medicine,

Indiana University, Bloomington, Indiana

This A#las was influenced by rescarch and devel-
opments in many areas of science; it also benefited
from countless discussions and brainstorming
sessions with esteemed colleagues. And yet the
bittersweet decision making regarding content,
format, structure, and design at every stage was
mine alone to make.

1 am indebted to family and friends for providing
much inspiration, energy, and loving support. This
book benefited deeply from nurturing and thought
provoking family dinner discussions and empower-
ing girls’ nights out. My gratitude also rests with
our cat, Jiji, who kept me company through the
many long periods of writing,

May 5, 2014: Researchers and StafFat the Cyberin

Science Center, Indiana University, Bloomington,

https://mitpress.mit.edu/books/atlas-forecasts
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Atlas of Forecasts: Models of (Desirable) Futures

Model Classes

Many different modeling approaches exist. The

table below by William B. Rouse shows exemplary

levels of modeling, issues needing to be addressed,

and models that have been successfully applied to

support decision-making.

Level Concern

Models

Society GDP, Supply/Demand, Policy

Macroeconomic

Economic Cycles

System Dynamics

Intra-Firm Relations, Competition

Network Models

Organizations | Profit Maximization Microeconomic
Competition Game Theory
Investment DCF, Options

Processes Patient, Material Flow

Discrete-Event Models

Process Efficiency Learning Models
Workflow Network Models
People Patient Behavior Agent-Based Models
Risk Aversion Utility Models
Disease Progression Markov, Bayes Models

Programmer’s
specifications

Erpe—

[same model]

@ TARGET SYSTEM

Formal model
- - 3
Approximation

Executable model

Comp. Program

A

Results
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Modeling Goals

Models aim tu capture key phermmem at the levels that are most relevant for

the und and

describes and h

that are

of systems. This spread
Iy studied when

€Y
aiming to understand complex systems. Phenomena are roughly organized
by question type (temporal, geospatial, topical, and network) and complexity.
d

Models that use static reference systems and no feedback cycles are i

d

of neurons, people clapping in unison at an
event, or the interdependent actions of traders
in financial markets.

Yoshiki Kuramoto proposed a simpl, clegant
mathematical modelin the 19705 that simulates
synchronization as a set of coupled oscillators,
represented by blue dots in the image below. Initally,
the oscillators change values rhythmically—each
at its own frequency. When the oscillators are
connacted, the ascillating nodes begin to influence

each llation phas I

first, followed by phenomena that aim to capture evolving networks and activity
patterns unfolding over them, including feedback or causal loops.

The greatest shortcoming of the human race is our inability to undersiand the

expomential function.

Albert A, Bartlett X
Phenomena of Interest
master list of key pl ‘that could be used to

Oscillation
Any motion that repeats itselfis called an oscills-
tion. Examples are a swing, or  ball on 1 spring

characterize a target system and/or
define what system a model aims to capture. Yet any
modeling effort should start with tabulations of the
phenomena to be modeled, together with informa-
tion on target system simplifications that may or
may not be acceptable. Those tabulations can then
be used to choose model class and parameter values
(see Model Class Overview, page 14).

A model might have various aims: to answer
particular types of questions (o, temporaliwhen or
geospatialiwhere—sce Questions Overview, page
68); to focus on 4 specific domain (e.g., sducation,
science, and/or policy—see Domains Overview,
page 70); and to capture diverse phenomens (such as
those discussed in this spread) at one or more scales,
from micro to macro (see Scales Overview, page 72).

Seasonality
Many systems have an inherent seasonality. For
instance, they might depend on changes in temper-
ature, precipitation, or daylight aver the year. Asa
specific example, matural-gas consumption patterns
are predominantly driven by shifts in temperature.
‘The largest net withdrawals occur in winter, when
gas is used for heating, sce figure below.

Natural GasSorage Widhdraals and Ijecions,

the energy x, over
time £, The figure below shows the latter example,
with a pen attached to the red ball and paper
moving from right to left as it records the move-
ment of the ball.

freeze into sync, they line up only in time, not space.

Kuramoro Oscillators

Phasciockivg  PhascLaeking  Phise Lacking

GG

Tipping Point

Atipping point (also called a regime shiff) refers to
a critical ponnt when gradual changes in external
conditions (e.g., temperature or the availability of
food) lead to a rapid change between the alterna-
tive stable states of a system. The changes can be

+—Morion of Paper E =2

2., if wood burns to ashes or a species
oes extinct).

drive the system far from equilibrium and result in
exponential change. For example, the purposeful
rewiring of 2 network can change a 1D string of
nodes and links into a star-shaped network with
completely different network diffusion dynamics
(see the discussion in Network Models, page 46).

Self-Organized Criticality
Also known as chain reaction, selE organized
criticality (SOC) refers to the fact that a system

is able to sustain only a limited amount of stress.
1§ stress exceeds a certain critical threshold, then
the system relaxes locally to an unstressed state,
and the stress is distributed to the nelghborhood.
Examples of SOCs are earthquakes and nuclear
chain reactions. Another example is sand pile
avalunches, which have been studied experimentally
using physical sand piles (see the figure below) and
analytically using cellular antomata (page 40).

Add Grains
Slape Increases ™ Slope

Critical o Avalanche Oxurs

4 Slops Decreas

In 1987, Per Bak and colleagues showed that
avalanches exhibit s power | distribution

of 3151 (see the Iog-log graph below of the
frequency of occurrence () of an avalanche of size

Maotion
uf Pen

Periodic functions can be used to describe a
particular oscillation, with sine and cosine being
the most common funcions used. For example,
the displacement oscillation of the red ball in the
figure above can be described by x{d)=X s (1 ¢

Alternatively, differential equations can be used
to deseribe ascillations (e.g., predator-prey systems
in which rabbit and fox populations oscillate with
o particular phase offset—see the example under

Jan. 2010-Jan. (Billion Ciubic Feet per Day) Basic Model in Lotka-Volterra Predator-Prey.
o l\rv Injestions Models, page31).
o
,m Synchronization
Some events coord time so they happen

T T
BBz WA AW k0215

T
Bago a2

I | Part : Methods

simultancously. Examples are firelies that
periodically light up together, excitation patterns

ight be
use of the original path, as the thresholds for those
changes vary in different directions, which is known
as hysteresis. An example is the idealized seesaw
shown below, wherein two oppasing states depend
on the position of the figure walking past the
midpaint (see nodes and images 3 and 7) and thus
creating a distance between the two tipping poins.

Secsaw Stare

Phase 'If'am!'n‘ﬂn

vank-ordered by size, for a toral
of 200 avalanches).

T

Both approaches can be applied t understand
the probability  that a path exists betvween twe
nodes/edges, or what fraction 1-p of failures is
required for the network graph to become discon-
nected (see the modsl discussion in Cellular
Automata, page 40).

Adapration and Learning

1n evolusion, adaptasion is the process that species
use to become better suited to their environment.
“There are phenotype changes (e.g. different bird
bealks exploit different food niches—see Gause's
Law, page 33), and behavior changes (e.g., birds
adapting to lif in urhan environments), which are
also called learning. Phenotype and behavioral adap-
tation s often complementary, as can be seen in the
illustration below of dung beetles evolving to have
shorter horns (dashed arrow) that make it possible to
sneak past fighting male competitors (solid arrow) in
order to reach female mates (red symbol at bottom)

Fractals via Recursion

A fractal is 2 pastern that continuously repeats at
different scales, such as can be seen in trees, rivers,

sively penerated tree pattern, the algorithm takes an
argument n and produces the five troes shown for
7=1,2,3, 4, 8 respectively.

T

Fractals via Diffusion-Limited
Aggregation

Diffusion is a widely studied phenomenon and
the primary means of transport in many systems.
Diffusion-limited aggregation (DLA) models can
be applied to simulate system growth and behav-
ior, such as that of the sample model result below.
Exemplary systems are snowflakes, lightning, and
cities. The fractal clusters grown by DLA models
are also called Brownian trees, as particles undergo
a random walk using Brownian motion until they
get within a certain eritical range, whereupon they
are pulled into a cluster.

Reaction-Diffusion Dynanics

‘This phenomanon was initially studicd in
chemistry for systems in which the concentration
of chemical substances changes due to local
chemical reactions, with diffusion then causing
those substances to be converted into each other

and transported in space. The same dynamics

Diffusion

Diffusion (also called spreading) can unfold over
discrete or continuous space, or via networks. It may
imvolve the spread of tangible objects {e.g., goods,
peogle, or even viruses) ox intangible objects (e.g.,
media, news, or evan bitcoin). In the 14th century, the
devastating Black Death (also known as the Plaguc)
spread throughout Europe via travel in waves—as fast
as one person could travel per day, arriving first at
the outskirts of populated areas (see map below).

Widespread availsbility and usage of the zirline
transportation system has led to vastly different
diffusion patterns. Since the 20th century, many
diseases have traveled via air traffic routes—from
one major urban center to the next—aquickly
endangering millions (sce the figure below, which
shows virus path probability for SARS; see also
Imspact of Air Travel on Clobai Spread of Injecetous
Diseases in Addas of Sctence, page 150).

Hungarian mathematician Paul Exdds is shown
in the subsequent figure. The central purple node,
denoting Erdés, has the highest number of links;
range nodes have more links than green ones.

As time progresses from 4 to C, nodes and edges
increase, as does the density of the network core.

Braesss Paradox

Adding a road to a congested road traffc network
can increase overall journey time. This paradox
was discovered in 1968 by mathematician Dietrich
Braess. Models now exist to explain why building
new roads can increase traffc congestion, and
converscly why closing major roads might improve
trafic flaw (see the Fasterls Slower example and.
model in Game Theory, page 43).

Positive and Negative Feedback Cycles
Many systems exhibit feedback loops—eyclic
structures of cause and effect that feed system
outputs back to system input, possibly via a series of
secondary processes. There are positive/reinforcing
and negativerbalancing feedback cycles.

“The book Limiss o Crowed (1972) discusses a

eystem

from one phase or stae of matte to another
ez from liquid 1o gas due to heat) is called

phase transition. Phase transitions also refer to
punctuated equilibria wherein periods of stability
are interruptod by phases of rapid change. The rapid
change is often due 1o positive feedback loops that

LR
b o ; odeled wsing
Size Phenomena Model Classes Target System Models bnic Models, page
Percalation Osclation Expert-Based Models 2% Predator-Prey Model (1925) n| g
e Descriptive Models: Indexesand Laws 28 Tinbergen's Gravity Model (1962) 1
v ] PP Point Predictive Models 30 Markov Chain Model (1913) Al
e 2wl | Phase Transton DynamicalEquations (1687) 32 Kermack-McKendrick Epidemic Model (1927) 38 | %% <5 %>
ofwater, They wanied t answer: What s the proli | Gelf. Organized riticality (S0C) Probability Theory (1713) 34 Eden Growth Model (1961) 40 - and metabolic
ability that the center of e n be changed by
Site/node and bond/link percolation models exist | Percolation Control Theory (1868) 36 Schelling's Segregation Model (1971) 4 m’“:}‘ “‘hg“
remar work for the
nodes while the latter focuses on removing links @8 | Adaptation & Learning Fpidemic Models (1927) 38 Prisoner’s Dilemma Model (1950s) 3
Fractals Cellular Automata (1940s) 40 Braess's Paradox: Fasteris Slower (1968) 43
Reaction Diffusion Dynamics Game Theory (1950) £ The Keller-Segel Model (1970) 45
Network Growth Continuous Field Models (1952) 44 Erdds-Rényi Model (1959) 47
Network Gatekeepers Network Models (1959) 46 Watt: Model (1998) 47
Network Attack and Error Agent Based Models (1980s) 48 Barabasi-Albert Model (1999) 47
Diffusion/Spreading Machine Learning Models (1990s) ~ 50 Economics of Wealth Distribution Model (1996) 49

number of that aim to capture
changes in population size. A causal loop diagram
(see Model Visualization, page 20) of 1 population
grovth model is shown below: the contral rectangle:
indicates population size; on the lef is the positive/
reinforcing cycle of births per year, parameterized
by average ferility, which accounts for the observed
exponential growth; on the right is the negative/
balancing cycle of death per year, parameterized by
average mortaliey.

Births
Per Year 1)

rage Mortality
(o ‘population
dying each year)

Average Ferility
(Fractiun of population
giving birth each year)

Population grovwth rates for different stable and
unstable scenarios are given on page 7, while diverse
modeling approaches are discussed in Dynamical
Equations (page 32) and Agent Based Models
(page45).
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Modeling Framework

When developing a model of a real-world system, many critical decisions must be
made regarding model components, their behavior, the environment, and system

dynamics evolving over time. Any model design should start with a specification of
stakeholders and their insight needs, followed by phenomena of interest, and fnully

the success criteria that define when a model is fit for purpose. Model

view i the model's assumptions, both explicit and
implicit; (5 Component Overview—a summary of
the model’s major process components; (6) Output
Overview—an introduction to the types of outputs
generated by the model; and (7) Result Overview—
4 starting point o “reader’s guide” to the various
model results

Uri Wilensky, developer of the agent-based
programming language NetLogo, provides guid-

for th of

and results communication must all be detailed. Diverse approaches have been
proposed to provide templates and standards for systematic model development
and documentation—in support of the replicabilify of results. This spread reviews
prior work on modeling frameworks and then introduces and expands the data
visualization framework presented in Asfas of Knowiedge, Part 2, to cover the
emergent phenomena discussed in the previous spread, as well as the expert-based,
descriptive, and predictive models discussed throughout the Atlas of Forecasts.

We cannot stap the march af history, but we can influence ifs direction.

Yuval Noah Harari

Prior Work

“Ihere exist many frameworks that aim 10 puide
novices und experts in the design, run, visualization,
and validation of models. Most are domain-specific,
focusing on a small mumber of model classes. Some
aim to develop a typelogy of important concepts,
while others try o codify the different process steps
involved in modeling.

For exampl, the Open Collaboration for Policy
Modelling (OCOPOMO) project has developed and
development model/fprocess
thar distinguishes six phases: (1) initial scenarin
definition, 2) evidence-based, stakeholder-generated
scenario development, (3) development of concep-
tual models, (4) programming of policy models, (5}
simulation and generation of model-based scenar-
ios, and (6) evaluation. The model assumes a close:
collsborasion betsween domain experts such as policy
planners and stratcgic decision-makers, stakehold-
ors, and modeling experts. In phase 5 of the process,
modeling experts instantiate simulation models
with particular variables, run the simulations, and
visualize the model resuls using text and raphs. The
visualizations help communicate system component
dapendencies and what systam behavior s derivable
from current scenario descriptions; as a sesult, domain
experts, stakeholders, and modeling experts can
provide feedback and help optimize model desiga.

“The NIH Cancer Intervention and Surveillance
Modeling Network (CISNET) aims to standard-
i the description of modals in suppart of model
comparison and reuse. They suggest using a set of

seven documents: (1) Model Overview—an over-

16 | Part2: Methods

view of i the

models: “What Is 2" encourages users to develop
2 general description of the phenamena being
modeled; “How It Works™ explains the model;
“How to Use It” gives instructions on haw to run
the model and use the interf the

of well-documented models that are widely used in
research and teaching.

Volker Grimm and colleagnes developed the
Overview, Design concepts, and Details (ODD)
protocol to standardize the description of individ-
ual- and agent-based models (IBMs and ABMs,
respectively) in ecological modeling. QDD defines
haw t0 group information: “Overview” captures
the purpose of the model; defines model entities,
their states, and scales; and provides information on
the madel process and run. “Design concepts” aim
to capture the phenomena that the model zims to
reproduce. “Details” describe model initialization,
input data,

model; “Things to Notice” advises how to describe
interesting phenomena that the model exhibi
“Things to Try” explains how a user can manipu-
I themodel produce ne resuls; Evending
the Model” gives d

a
. In “Partern-Oriented Modeling
of Agent-Based Complex Systems,” Grimm and
colleagues argue to use phenomena such as growth
or diffusion patterns to characterize a real-world
system and its dynamics and to develop  model

how to change the model to examine new features
and phenomens, similar to the future work section
ofa research paper; ‘\k[l..ﬂgn Feamres” discusses

questions that the model was designed to answer;
(2) Model Purpose—a description of the primary
and secondary purposes and problems for which the
model was designed; (3) Parameter Overview—an
overview of the parameters that inform the model;
(4) Assumption Overview—a preliminary aver-

Process @ interaction Types

Transizte
e @
Operationalize:

. Data Scale Types o Model Types

Typology

o o0 o

Insght Needs
Basic nominal v descriptive s table
» categorize/cluster » ordinal  » predictive chart

« crderfrankfsort - interval « graph
. «ratio. *man
Phenornen hree
« osdilltion « nework

« synchronization

‘NetLogo that are
e n the el “Relred Models provides links
0 other relsted agent based models; and “Credits

late those paterns.
“The UK. Review of Qualiey Assurance of
Government Analyeical Models derails four model
steps: (1) scope and specify, (2) build, (3) valdate,
and (4) deliver and use. Given the simplicity and
broad UK. government usage of those steps, we have
attempted to align them with the data visualization

and References” directs how to
ereated the model and where the user can go to find

(DVLY in Atlas of Knorulede and
the ModelDVL-FW presented here. The first step

the model. Th
been widely used, resulting in a rich and diverse set

(]

Graphic Symbcks - Gracic Varobkes Intacions
« grometric

ly carresponds to user a
discussed on page 40 in Adizs of Knowledge; step 2
corresponds tn model design and run (page 18} step
3 concerns model validation (page 22); and step 4
provides extensive detail on how to deliver and use
models in practice (partly covered on page 20)

Methodology
“The Atfas of Forecasts introduces 2 general modeling
framework called Model DVL-FW, which aims
to extend and build on the work above. To our
knowledge, this ambitious endeavor has not been
attempted before, most likely since it would be
difficult to implement for the following reasons:
existing frameworks have been developed for a vast
range of stakeholders—researchers, policymakers,
and practitioners; there exists no unified linguage
for core concepts, such as key phenomena; and
existing models have been developed in different
domains, amid different cultures, with various
needs, affordances, and terminologies.

“To overcome these challenges and to standard-

and methods
we conducted 2 comprehensive review of more than
200 publications documenting work by mathemati-
cians, statisicians, physicsts, Blogists, ecologists,

ine language

= spa = zmom
symbols oston
« bnguistic = retinal
symbols form » datalks-on-demand
« pictarial color = history
symbals optics * eract
mation
* prajection
= distartion

back
to seminal work from the 1600s. In addition, we

conducted a series of workshops and conferences,
bringing together world-leading experts to weigh in
on general modeling frameworks and their usage in
different domains (see Acknowledgements, page ).

‘The modeling framework presented here was
shared with experts and societies working on unify-
ing approaches to model design, execution, and
validation (sce References & Credits, page 180).
‘The comments were incorporated to expand on the
coverage, internal consistency, utilty, and usability
of the framework.

‘The resulting modeling framework
it casy to specify, desige, run, validate, and visualize
the results of different types of models. It sims 1o
empower decision-makers to simulate, understand,
communicate, and manage education, science,
technology, and policy (ESTP).

s 10 make
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More than 300 modl appl d
hronghons this rar—with e o thos tht
were applied in practice and that made a posi-

tive difference. Additional examples can be found
im special journal issues: *Science of Science:
Conceprulizations and Models of Science” in
Journal of Informetris (2009), “Miodeling Science:
Studying the Structure and Dynamics of Science”
in Scientomesrics (2011), and *Simalating the
Processes of Science, Technalogy, and Innovation”
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As noted sbave in Prior Work, model validation
is critical for any modeling effort (see also the itera-
tive model refinement figure in Which Model, page
4). During validation, empirical real-world data is
compared to analyses and visualizations of modeling
results. Comparable visualizations of empirical and
simulated data make it possible for domain experts,

el and model i experts
(computer scientists and programmers) ta comment
on results and suggest model improvements, which
in turn may lead o a better match of simulated and
empirical data (see Model Validation, page 22).
‘Typically, iterative model refinement is required
o arrive at more accurate, easier-to-understand
models that capture important patterns, trends, and
phenomena in real-world systems.

Daa visualization is central o both the
DVL-FW and the Model DVL-FW. Given the
interdisciplinary nature of most data analysis
and modeling efforts, it is of utmost importance
to communicate model structure, dynamics, and
results effectively across disciplinary as well ss
institutional boundaries—within academis, indus-
try, and government policymaking. The DVL-FW

Motion | Optics

in 20165 n the Spriger bosk Ml
oS s (01 and 1Mokl

Visualizing Science and Technology nmhpmm
published in Proceedings of the National Academies of
Sinzso e Unised S of Ancric (2015

This spread g

ing s om the seven types
defined by the DVLFW typology (see numbers
17 in the figure on the opposite page) by adding
Phenomena o Insighe Neds undex Typology (as sug-

the remainder of Part 2 details that framework and
spples 0 iniodoce expert based,descrpiv,and
which have

generally map data

variables o graphic symbols and their graphic vari-

ables. Visualization design starts with the selection.

of a visualization type (e, a graph or map). Types
i 4 praphic variables are th

il inthe In
the process shown on the opposite page, Model now
appears instead of Analyze (formerly shown), thus
matching Models under Typology, while Validase

In practice, most modeling exercises start

pested by replacing joins Interpres a3 one step.
Analyss (formerly shown) with Madels, which are
pecifically descripti P with stakehold

ypes
dly, ph types are a special-

been successfully used in ESTP research and practice

Modeling Framework
Analogous to the data visualization literacy frame-
work (DVL-FW) presented in A

tzed insight need; in addition

stories, that characteize real-workl vidence.
opinions, views, and

vions, clsters, o srings,stkeholdars might be

selected (see types 4-6 in the figure on the opposite
page, and types 5 and 6 in the table at left). Graphic
symbols include geometric symbols (e, point,
line, area, surface, and vohume) and also linguis-
tic and pictorial symbols. Graphic variables can be
grouped into spatial and retinal variables, wth the
Latter further subdivided into form, color, texture,
optics, and motion. Some graphic varibles are

I . shape, color hue, and pattem) and

groups.

interested t0 identify oscillasion o sy
pattesns, ox to understand the inne:
and

(pages 22-73) and in the associated “Data
Visuslization Literacy: Definitions, Conceptual
Frameworks, Exercises, and Assessments” paper,
the modeling DVL framework (Model DVL-FW)
defines a typology of key terminclogy, together
with

Models now include descriptive subtypes to
analyze data {using temporal, geospatial, topi-

cal, and network approaches to help answer when,
where, what, and with whom types of questions)
and predictive subtypes to simulate data {to help

pr
design. As the name suggests, ModelDVL-FW
extends the original DVL-FW to cover descrip-
tive and predictive models that sim to capture and
reproduce emergent phenomens introduced in the
previous spread (pages 14-15)

gy
‘The ModelDVL-FW uses visuslizations t help
design, optimize, and communicate the results of

why

have a certain structure andor dynamics)

Process

“The original DVL-FW process model supports
descriptive models (page 28) that analyze past
and present data to identify patterns, outliers, and
trends. T ordertosuppore he desga, ran, visual-

world target system; they may even contradict
eachhr, proviing excletprompis o ich

q
are w0 represert qualiatve data (e, duca-
ing, and job type). Others are quantitative
colrvalue o saurton, o sped) and

and meaningful discussions.
ment is benefited by the presentation of real- weorld
data and results from prior data analyses and
scenario design efforts. Data visualizations can

(e.g weight, temperature, and diffusion parierns).
Adlas of Knowledge details visualization types (page
30, graphic ymbsol types (page 32), and praphic

help capture modelideas (see Model .
page 20).

“The Madzl process step covers the design, imple-
mentation, and run of a descriptive or predictive
model. Adasof Knausldge (pages 44-71) covered
the design of temporal, geospatial, topical, and
network analyses and visualizations. The subsequent
spread (pages 18-19) discusses the design and run

tzation, and validation
models, stakeholders must be zmpnwerrd 1o iden-

of computational predictive models, and presents
Furth

discussed on pages 30-51).

pes (page ), with & Fwhich
graphic asiabes ae preateatively processed (2.
recognized quickly and independently of cultural
influences) and which praphic variables most accu-
rately convey comparisons of data varisbles.

‘The subsequent pages introduce model design
and usage, and also model visualization and
validation, as guided by the typology and process
defined in the Model DVLFW,
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Model Visualization

Model assumptions, designs, and results should together be communicated in a
format that is appropriate for a wide range of modeling stakeholders and experts.
Visulizations can help domain, modeling, and programming experts to collaborate
closely in the conceptualization and design of models. With those visualizations of
model setup and run, the impact of different parameter values on model results—
including emergent phenomena—can be visually explored. Further visualizations may
help stakeholders compare and interpret model results, and then communicate them
to experts or general audiences. Visualizations can be static, dynamic, or interactive.

The height of sophistication is simplicity.
Clare Boothe Luce

Visualization Types

Tceberg Model
“The iceberg model provides a syste:

identifying insight needs and phenomena; selecting
the appropriate data, analysis, madel class, and
visualization types; and performing an accurate
‘mapping of data variables t© raphic symbols, as
well as variables to interactivity design, if beneficial
(see the visualization and modeling frameworks
presented in Adlas of Knzuoledge, Part 2, and
expandad here in Modeling Framework, pags 16).
As discussed in Model Designand Run (page 18),
‘modeling often involves a team of experts, inchuding
decision-makers with deep domain knowledge, 25
well as modeling experts, algorithm developers, and
interface designers. It i of utmast importance that
all team members have the same understanding of
‘model goals, structure, and dynamics.
Visualizations can play a major role in

for detailing what is observable shout real-world
systems. As the figure below shows, the model
contains four parts: Events, Trends (5 Patterns,
Structares, and Mental Models. Like an iceberg tip
above the water, Evenss are visible; like the under-
warer base of that iceberg, the other three pars are
invisible and thus harder to capture.

Evens indicate what has happened or what
was observed. Thends £ Patterns refer to what is
changing; they intend to capture changes in state
“variables a5 well as model structures and dynamics
that occur over time. Systers Seructures refer to
the elements that support, create, and influence
the temporal and spatial patterns which kad to
system dynamics; with a focus on physical entities,
onganizational strstures, exsing policis, or
rituals and they aim to answer

simulation resubts, or model comparison result.
“They make it possible to keep track of a potentially
large set of model components and state umhks in

“What causes the patterns we are abscrving in the
empirical data?” Finally, Mental Models seck to

capture theatitces, blies, morals, expectatons,
and values

order to get an
and 1o compare multiple model runs or model
types. Simple, casy-to-read visualizations are best.

“This spread presents general visualization types
and examples that have been successfully used to
support model conceptualization, design, and run;
visualizations that communicate model results are
featured on pages 32-97.

Model Conceptualization

“The ODD Pratocol, introduced on page 16, argues
that model conceprualization must define all the
selevant model entities, state variables, and scales.
Different types of visualizations can be used to

support that task.
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Visible

Invisible
[fental Modds |

‘The iceberg model allows for events, patterns,
and structures to be identified, and for changes in
mental models (e, powerfincentive structures) o
‘be productively discussed.

Anticipate
Redesign

Regenerate

Connected Circles

‘This method helps identify and interlink the major
components of a target system using either paper or
digital means. The paper example above shows how
major components, written on small pieces of paper,
may be placed around the outside of a large circle
according to their similarity. System components
can then be interlinked via lines to uncaver
structural and dynamic relationships. Particularly
important parts can be highlighted or underlined.
Lines of different colors can be used to represent

different types of component relationships.

Model Design Visualizations
“The structure and dynamics of models can be
characterized using conceptual models (causal
loop diagrams), mathematical formalas, computer
models (e, pseudocorde or computer languages),
o physical models (see examples in Which Moddl,
page 4). Scripting languages such as NetLogo,
Repast, or Stellar help facilitate model design,
run, and verification by nonprogrammers, because:
ther code syntax more losely resembles natural
langusge than othes programming languages. Here,
‘we introduce different visualizations that support
model design.

Bebavior-Over-Time Graphs

Typically called BOTGs, these are lin graphs that
communicate patterns of change over time, such as
the seasonalicy of a variable or the delays between
£wo variables; see the example in Limits to Growth
Model (page 7) and the graph belor.

Cost Pressure

Produc Cosc

Product Quality

Time

“The x-axis of a BOTG represents units of time;
there are well-defined start and end points, and 2
resolution (seconds, minutes, hours, days, years,
etc) thatis relevant for capturing system dynamics.
The y-axi represents onz or more variables of
interest; it is lubeled with that variable's name,
has a well-defined scale that can be numeric (¢.g.,
income or funds spent per year on a scale of §0 to
$1 million) or descriptive (e.g., low vs. high), and
includes 2 legend so that different variables can be
easily distinguished.

BOTGs might be used to understand i all
domain and/or modeling experts plot varisble
change over time in the same way: Did they
all use the same general curve or shape (linear,
exponential, S-shape)? How do the slopes compare
{with steeper lines indicating faster growth or
decay, and fiatlines indicating no change)? Do they
start or end st around the same time, and are there
major differences in y values at those points?

1 multiple variables are graphed. are they
interdependent, or are there causal relationships
between them (e.g., educational investment
eventually leads to higher income)? The interrelated
behavior of variables over time can be visualized
using cansal loop diagrams (CLDs), as described
below. System lags (e.g., the average time it takes
from the completion of an educational degree
to 3 salary increase) can then be visualized and
discussed. Feadback cycles (e, more funding leads
to more publications and citations, increasing the
chances to win future funding) can be captured
and visualized using state-transition graphs (sce the
apposite page).

BOTGs can also help identify the type of
data that s most valuable for model design and
evaluation. Given a collective understanding of
why certain data s eritical for modeling a target
system, resources might become available to acquire
such data for the most critical variables, rather than
using only data that s readily available.

Cansal Loop Diagrams
In serial systems, each variable continually impacts
the nex. In other systems, there exist feedback
cycles, which may involve numerous variables—
causal loop diagrams (CLDs) can be used to repre-
sent those systems. Variables might have positive (+)
ar negative {-) impacts on each ather: positive feed-
back occurs when an increase in variable A increases
wvarlable B; negative feedback, In contrast, is an
increase in variable A decreasing variable B. There
are also balancing feedback loops wherein positive
and negative impacts result in a balanced dynamic.
In addition, there can be extemal variables, or con-
straints, that impact overall system behavior. For

instance, in the process capability model below,
cost pressure positively m.p.m product cost, which
negatively impacts product quality (the two verti-
cal parallellines denoting zdzluy), which positively
impacts product cost. The dynamic behavior of this
model can be plotted over time usinga BOTG, 2s
shown on the opposite puge.

Process
Capability

. T /AF\P:A "
m:, s (i
d L

Another example of a CLD is given in Limits

interest and the weekly deposits increase the
account balance, and the weekly withdrawals

conditional operation that determines which of
two paths 2 program will take; a parallelogram to
fi

wellas

‘The supply function (diagonal black *S” line) is

denoted as §-5(-1); the demand function (diago-

nal red *D” line) is dammd = D). Macket
Pl demand:

he d d vithdravwals, might ch
time. In addition, the account balance is graphed
over time within the ceniral block.

Inresest Rare

Account

to Growth Model (page 7). e
Black Diagrams Weskly Deposit
widely used in engi A ple using STELLA is given for
1o descrbe systems at-a gonerallvel e t0 predator-prey models on page 31
identify principal parts o functions and their
raphic State-Transition Graphs

rectangles that present e athomti o Iogical
operations, with arrows showwing the relationships
between blocks. Each block has a single ingu,

Also known as a state diagram, 2

Do While Loop

While Loop

Flowcharts differ from STGs in that they
transition hetsween nodes automatically upon
completion of activities, while STGs require

graph (STG) can be used to visualize the dynamics
ofsystems it discree and fniestases. The graph

output and
product of the imput and trarsfr Functions
A take-off pint passes  sigaal ot or

states and state transitions of the system. Next,
states are represented by nodes in a network, and

mare blocks or g po

point has two or more inputs and a sm.glr output;
it produces the algebraic sum of the positive or
negative inputs.

Shown below is a block diagram with two blocks
labeled G(z) and H{3), one take-off point (in red),
and one summing point {in gold). The transfer
function G4 reads Z(4) and outputs Z()GHe). In
this closed-loop control system, the output is fed
back to the input to control the desired output (see
the discussion in Control Theory, page 36).

Take-Off Point
ZBGH v

Summing Poing

Xt 21

Stock-and-Flow Diagrams

‘While CLDs enable a system to be qualitatively
understood,stock-and-fow diagrams can be wsed
0 perform a detailed Iyss. A stock

by directed edges. Edges a
labeled by the ingut of the next state. The initial or
start state of the system is commenly represented
by an arrow with no origin pointing ko the state.
“The final or accepting state is indicated by a double
circle. Not all systems have start and end states.

“The example below shows 2 system with two
states and an acceptor for strings over [0.1). 5, is the
start state, as indicated by the furthest left arrow.
1€, is 0, the system transitions to 5,. The system
remains in state &, until a0 string returns the
systemto 5. There is 5o end state.

events to transition from ane

5-D, Thzcumergemmnde(kﬁgﬁpﬁ)stznswlﬂl
() low prices and low supply, which causes b)
prices to rse; as (¢) supply i increased, (d) prices

fall; 35 more is sold, there is (¢) lower supply and
therefore (£) higher prices; when prices and supply
finally stabilize, (&) equilibrium is reached.

0 0
0 umao @ 0 W oo @
Quantiey Qua

State Space Graphs

A systems abstract state space, or phase space, can

p be used to deplct thatsystemisstate over time; &
node to the next. sequence of states can then be animated to reveal
L system dynamics. A state space is commonly repre-
the possible Model Run V; sented. 1 in Enelidean space, with the
ode resukscan b prsentd vis s, s indicated on the sxes.
topical maps—incuding 2D and space of & temperature control unit is

30 maps, which are used in
design e the owe right igurs on page 171) or

axis plots temperature;
the verical axis plotsconrl mllpnll “There are

o show.
iseses (e Diffoion Phenomens, , page 15), the
evolution of artificial life (page 41), and neural net-
work actvations (SrarCraf IF: A Nevw Challenge for
1). Model results

two
certin valus, Offwhen th temperacure s 0o hih
Hystereris occurs when the temperature is between
68 and 70 degrees Fahrenheit; thus, the state

can also be communicated using trees, such as to
trace the evolution of organizational ierarchies or
genealogies; ar by networks, like those used to track
international air travel.

Visualizations might be static or dynamic/
animated; they can also be interactive—allowing
viewers, for instance, to speed up or slow down

time, or to zoom in and out of areas of interest
(sce interactivity types in Modeling Framework,
page 16).

Simulation tools (e.g., NetLogo, Repast) support
changes in model parameters during model runs,

denotes any entity

AnSTG for a theee-type which plore system behavior
discussed on page 34. and on-the-fly dynamics.
Exemplarily, we discuss cabweb and state space
o ‘praphs here.

over time; a flow is the nkzn(dung!lnlhzkilbd:
Stock-and-flow diagrams are usually built and
simulated using computer software. The figure
below uses the STELLA visual

graphic symbols to
define different logic steps in a process {e.g., the
loops shown in the subsequent two figures). Symbols
include a rounded rectangle to indicate the start or

language to model bank account dynamics: The

end of s fsubl
aperaton tha changes drs; 8 dismond fo any

Cobweb Graphs
Cobweb praphs can be used to plot the evolution of
astate variable. For example, the subsequent figure
plots product price over quantity in convergent and
divergent modes (st left and righ, respectively).

for Offis lower than it i for On.

Hysteresis

off

Control Outpur

S

o 7
Temperature

In the ball on a spring (oscillation) example on
page 14, the state space can be characterized by
the position and the momentum of the ball. In the
Lotka Valterra differential equations discussed on
page 31, the state space plots the state of the system
a5 2 vector within the space that i defined by the
number of predators and preys.

State space can be cither discsete or continuous
in terms of time and space (see page 13).
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Model Validation

The image below illustrates combinatians of low
and high precision and accuracy using a bullseye
graph. While there are no bullseye hits in the lower

Models should aim to capture the behavior of real-world systems in a simple yet
useful manner that can be validated across scales. At the micro level, the type and
behavior of individual components (e.g., agents for agent-based models or nodes for
network models) need to match up with their real-world counterparts. At the macro
level, the aggregate, emergent properties of the model (e.g, oscillation or adaptation)
must reflect the phenomena observed in the real world. Models must be evaluated
based on the accuracy and generality of their predictions. Evaluation results should
be used to increase the accuracy, specificity, or generality of the model, or to make
model results easier to understand and use by decision-makers.

The more any quantitative social indicator is used for social decision-making, the more
subfect it Will be to corruption pressures and the more ape i will be to disort and
corrupt the social processes it is intended to monitor.

Donald T. Campbell

Quality Assurance Framework
Quality assurance (QA) refers to processes that help
ensure (1) & model’s inputs and outputs meet exist-
ing requirements; (2) model erors are understood
and can be managod; and (9 the model i robust and
it for purpose. The Review of Quality Amaranceof
Governmens Aatyecal Models epors, commissioned
by the ULK. Deparument for Transport, ideni-

fiel mor types of QA methods and graphed them
i terms of business risks versus model complexiey
{sce the figure elow rightl. QA techniques used by
industry, government, academic, and other leading
entities range from elatively simpl version control
(in the lower left corner) to full external model audit
(i the top right corner); in between are developer
testing, periodic review, internal or external peer
review, and ather techniques, which vary according
to model complexity and business risk

Model Simplicity

Occams razor principle states that “Entities should
ot be multiplied beyond necessity.” As applied to
modeling, that means if there are two models vith
equal predictive powes, the simpler one shauld be
chosen, That s, if any components, varizbles param-
etors, rules, o assumptions can be eliminated from
the model without osing the model's explanatory
powes, they should be omitted.

Model Robustness

“The robustness of 3 model is determined by measur-
ing change in model predictions given minor varis-
tions in input data and/or parameter settings. Ideally,
variations and uncertainty in data, and their impact
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left corner of low precision and accuracy, there are
many hits in the top right corner of high precision
and accuracy.

e

Increasing Accuracy

Increasing Precision

on model results, can be quanified and communi-
cated to mode] designers and users. Similarly, it is
important to analyze, visualize,
Hhow sensitive a model s t particular parameters;

woward that end, parameter sweeps might be run 1o

Thel: uy arrow indicates decreasing random
and systematic error across the diagonal. Random
ervor (a the top left comer) decreases with more-
accurate data and be rized modelk

QA at Different Model Stages
As discussed in Model Design and Run (page 18),
there are various model stages, with appropriate
types ofvaldation for each. Here, we discuss QA
for all o modsl stages: concepruslization, desgn,
build, and test and deliver. Detailed guidance

for the later three, as sdenrified n the Reviens of
Quaity Amuranc of Governmen: Anayical Model,
4 listed i the text b on the oppasite page

Conceptualization

The most efficient and robust methods should be
used to support target system salection, delinea-
tion, abstraction, and documentatian of the non-
formal model—and that nonfrmal model should
he documented such that domain experts, modcl-
ing experts, and computer-scientist programmers
<an understand, question, and advance the model
Consequently, model visualizations (page 20) are
aften used to facilitate and validate the ideation
abstraction, and translatian process.

Design

When designing the formal model, modeling
experts should keep furure model stages in mind
50 that implementation, deployment, and testing

idemify which model results are most sensitive, and
10 which input and parameter changes.

Model Precision and Accuracy
Accuracy refers o the closeness of a measured value
10 8 standard or knoven () vakue. Precision refers
10 the closeness of two or more messurements to
cach other. Typically, the more that messurements
are made, the better the precision and the smaller
the error

Systematic error, or bias (at the lower right comer),
makes all values wrong by a certain amount, which
can be due to many factors (e, wrong model
assumptions, imperfect data processing, or subop-
timal model parameters) leading to invalid results.
Model validation aims o identify and reduce both
types of errors to arrive at higher model precision
and aceuracy.

Building on the simple QA T ExemaiMoosAvdl
methods outlined below,  map
complex models affecting
major business decisions will
inaddition justify resource
intensive QA

Higher
business risk

" For simple models with low
qam Ievelsof ik, minimal QA is
proportionate

Lower
business risk

Relatively Highly complex
simplemodels models

canbe y p L Internal or external
domain experts should conduct QA reviews—of
model structure, logic, and assumptions—as well as
assessments of the quality, accuracy, completeness,
and suitability of input and output daa

Build

“The formal model is then implemented by com-
‘puter-scientist programmers. Any differences from
the original design should be documented and com-
municated to model designers and domain experts.
‘The completed model implementation should he
erified, and test results should be shared to ensure
the model i fit for purpose.

Test and Deliver

Computer-scientist programmers will test-run the
model and filly docurment results. Tn collaboration
with modeling experts, they will develop any needed
training materials, and finally test hoth (documen-
tation and training) with domain experts to ensure
model assumptions and limitations are understood.

Afl Model Stages

During the model development process, all model
documentation must maich model complexity and
risks. For instance, simple models with low busi-
ness risks vill require far less documentation than
‘complex models with high business risks; the laer
might require extensive formal documentation and

and
continuous review 1o ensure proper usage.

Model Validation

Model validation is the process of determining.

It s commonly done a5 a joint collaboration across
teams; data and code-use agreements might need to
be putin place to ensure all teams have access to the
same resources. The teams agree on the target sys-

tem and the insight needs to be addressed—includ-

whether an implemented modelis 2. -

resentation of some phenomenon in the real world;

ing emergent be modeled. The teams
might then pick the same or different model classes

t
fidelity to satisfy stakeholder needs; and that model
results are precise and accurate. It aims to ensure

settings. An agroed-upon
common set of intermediate and fina] model results
is considered; the results are compared o each other

capturing well-defined target system behavior; and
resuhs in more detailed model documentation that
increases repraducibility. Sometimes, model results
differ substanially, making it necessary to question
model assumptions and inspiring future rescarch.

Model Limitations
Every model is a simplification of a real-world tar-

get system that captures key system structure and
behavior; a perfect facsimile would be of limited

the model has Iy
sufficiently general 1o capture new system states
(i.e., not overfitted or too closely adjusted to a spe-
cific set of real-world data o observations at the
cost of generalizability).

Model Verification

Model verification sims to make sure a model does
what it is intended to do. Target system abstrac-

and to emplrical data (e.g. changes in P

values over time).

Comparative modeling greatly enhances the
credibility of modeling results, as it helps identify
model errors and biases; communicates advantages
and disadvantages of different model classes for

Meodel Design QA

value for the world. A literature

fiarure event or condition can be changed by policy,
and policy consequences can be forecasted. (3)
Gradations of foreknowledge and probabilities can
be made; we can be more certain about the sunrise
than about the rise of the stock market. (4) Humans
will have more influence on the future than they
did in the past. (5) No single method should

e trusted by itself; cross-referencing methods
improves foresight. (§) Anticipation and planning
must be dynamic and able (0 respond to new infor-
mation and insights.” Model designers and users are

review by Mohamed Saleh and coll
Survey on Futures Studies Methods” identified
alist of typical model limitations, including: *(1)
You cannot know the future, but a range of pos-
sible futures can be known. (2) The likelibood of a

Model Build QA

y known model
limitations and all validation results to ensure their
models and model results are used intelligently
and optimally

Model Test and Deliver QA

tion, formal model design, and model code (see Developer testing—use of a range of developer ing 3¢ 2
page 18) all need to be verified. The former two d i i i for
verifications benefit from expert reviews. Model or sense check. are captured. historical datasets.
uses techniques typi pe ing: - e -
to develop, debug, or maintain largs the devel-
programs. Examples are proper code version con- opment of the model, i changed since the assumptions wers originally set.
teol regular code reviews; logging code runs (e, organisation e i — —ri
recording and analyzing the number of compo- - i,
nents/agents that are generated and terminated b . = —
during a model run, their local behavior, and any ’ e T e e g e
emergent behavior); and keeping records of user is being developed.
interactions (e.g., nput data or parameter changes,
B Useof

and accessing analysis results or visualizations) in

different versions of a model. 2
support of model and user interface optimization. iy
Model Replication Internal

Internal ie the of

Replication occurs when a model Iy
published by one expert team s reproduced by
another, independent expert team. To make that
possible, model design and run should be docu-
mented at a level of detail that supports rede-
sign, reimplementation, and rerun by other tearns
Development and adoption of model documenta-
tion standards (see the discussion on page 19) make

Quality assurance guidelines and checkiists—mods!
Geveiopment refers to department's guidance or
other documented QA processes (e.g. third-party
publications).

External model audit—formal engagement

of extemal professionals to conduct 2 crtical

‘verification testing results to ensure resuits are

Reviswing outputs—checking that outputs are.

partof the development tsam.

Extemal code review—peer-review of model
logic, assumptions and coding to ensure the model

‘taken, includ itations, afterna-
‘tive scenarios, etc.

Transparency—publication of the mode itself,
orthe test scheduie and resufts, may provide

evaluation of the model, perh

as passible. This will generally be conducted by
‘someone external to the organisation.
Test review—independent review of the verifica-

appropriate.
Extemal independent testing—external peer-
review of the full system.

formal aud ithi

writing and reading model descriptions easier, with professinals.
those planning, design and/
. or sign-off of model for use is referred to a more
Model Comparison T p = i
Modeling efforts conducted by different teams often for the model.

‘yield disparate results that are difficult or impos-
sible to reconcile. Common reasons are insufficient
documentation, proprietary data that cannot be

‘tent with the model design specification. This will

organisation. This would need to be supported

for scrutiny, and/er results are published.

Extenal audit—a comprehensive formal model

Paralle! builds—for complex, high

shared across teams, or diffe in exactly how

a model is implemented and run. Comparative

between two or more models in a systematic way.

might be a better altemative if model is regularly
updated and usage and “lower level” checks such
2 intemal peer review are already in place.
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Cellular Automata (1940s)

Cellular automata (CAs) are mathematical models that can be used to simulate
complex systems or processes. CAs are applied in several fields—including

biology, physics, and chemistry:
plant growth, or embryogenesi

to analyze phenomena such as artificial life,
. CAs consists of elements called cells. Each cell

has a value, or state. Cells are connected to certain neighboring cells to form a
one- or multidimensional lattice. Cell states change at discrete time steps using
a set of predefined rules that take the previous states of connected neighboring

cells into account.

Brief History

Cellular automata were developed by John von
Neumann and Stanislaw Ulam in the 1940s.
“They were ntally used to implement self-repro-
ducing machines, such as Rule 90 (discussed in
Basie Models below) or Conway's Game of Life
(explained on the opposite page). Later, cellular
automiata became a popular modeling framework
for simulating emergent behaviors and for describ-
ing nonlinear spatotempors] dynamics n 2 simple
et concise manner, Comprehensive studies of
cellular automats have been performed by Stephen
Wolfram, s documented in his book 4 New Kind
ience (2003

o

Terminology

Cellular automata simulate & dynamical system
using a deterministic rule set, discrete time, and
a discrete state space. The rule setis implemented
using finite-state machines. The set of identical

finite-state machines is arranged in 1 regular grid
structure that can be 1D, 2D, or multidimen-
sional. Most 2D celhular automata use 2 square
grid (see Comway's Game of Life on the oppasite
page), but other grids are also possible {see the
triangular, square, and hexagonal grid patterns

in the figure below).
/,\\_ ,’\ n—{l H
X0 HHH £33
vavg RSos

Triangular Squire Hesagonl

The number of distinct states (often represented
by colors) that 2 cellular automaton may assume is
typically an integer. The simplest choice is binary (0,
1), with 0 {dead) commonly represented by 1 white
color, and 1 (alive) denoted by black. A continuous
range of possible state values is possible.

In each discrete time step, cell stares are updated
dynamically as a function of the old state of each
cell and finitely many of is neighbors. The rule is
the same for each cell, but the result of applying a
rule depends on the spatial contexs of a cell

The neighborhond in which cells affect one
another must be specified. The simplest choice is
nearest neighbors, whereby only those cels directly
adjacent to a given coll are affected at each time
step. In the case of a 2D cellular automaton on
a square prid, two neighborhood definitions are
common: the Moore square-shaped neighborhood
and the von Neumann dizmond-shaped neighbor-
hood (see the figure below}.

Von Neumann Moare

The range r defines how many cells are consid-
ered to compute the next state for a cell (the
central black cellin each image sbove). A larger
mumber of neighbors is less eficient to compute,
but often leads to better isotropy, or uniformity
in all orientations, and is therefore often used to

model natural phenomena.

Basic Models
“The simplest type of CA uses a 1D prid, binary
states, and only neasest neighbors. There are
292256 of these so-called clementary cellular
automats, and each can be indexed by a unique
binary number whose decimal representation is
called a rule

Anillustration of Rule 90 for 3 1D CA is shown
in the subsecuent figare. Given a single black eell in
the middle of the top grid line, a determinitic set
of eight rules (shown above the grid in next column)
15 applied to generate the next stae for each cell

In time step 1, only rules 4,6, and 7 are applicable,

resulting in the pattern shown in the second line.
The rules are applied iteratively for as many time
steps as desired (rules 3, 4, 6, 7, and § are applied in
line 2, resulting in the pattern shown in line 3)—
13 times overall in the example.

Rile] fulez Rule3 Ruled Rdes Rule Rde? Rules
m—

Rule 232, known as the majority rule, creates a
different dynamic. When run on any finite set of
cells, it computes the value held by a majority of ts
cells. For example, starting with a random distri-
bution of black/white cell patterns, in each time
step, each cell takes one of the finite discrete states
and simultancously turns to a state that is mast
common within s local neighborhood, leading

@ the formation of a patchy pattern. Over time,
the pattern coarsens until the boundaries between
areas of different states (e.g., white/black) become
straight enough. Different patterns emerge if the
number of states and the radius of the neighbor-
hoods is changed.

The figure below shows the result at steps 0, 2,
and 10 of the majority rule when applied to.a 2D
state space of 100 x 100 grid cells, with two differ-
ent states and a radius of 1, as penersted using the
Walfram Demonstrations Project.

Siep Siep? S 10

Key Insights

CiAs are used extensively for modeling phenomena
such as molecular dynamics, bydrodynamics, physi-
<al properties of materials, reaction-diffusion chem-
ical processes, grovwth and morphogenesis of living
arganisms, ecological interaction and evolution of
‘populations, propagation of trafic jams, and social
and economic dynamics. They provide 1 valusble
frameseork for modeling percolstion phenomena
and the concept of self-arganized critcality (SOC),
among other phenomena.

Percolation

Percolation s studied by physicists and mathemati-
cians as 2 model for the flow of 2 substance, like oil
or water, through certain types of porous media,
like sand (see Modeling Goals, page 14].

Simon Broadbent and John Hammersley
introduced a percolation model using the example of
a porous stone immersed in a bucket of water. Their
model helps answer: What s the probability that
the center of the stone becomes wet?

The figure below shows an example of ste perco-
lation clusters on 2 square 20:x 20 prid-cell latice
for p=0.29, p=0.59, and p=0.8. If the probability p is
low that a cell s black/wet, only a fow small chusters
are formed; 1 p is high, large Interconnected chus-
ters are formed spanning the whale latice. There
exists 1 critical intermediate g, or p, in which a

‘phase transition occus.

pe0d

Percolation models have alsa been used to help
anderstand the impact of network structure on the

Conway’s Game of Life

In the late 19605, the B

mathematician John H. Convay invented the

Game of Life, which was later popularized in Martin Gardner’s “Mathematical
Recreations” column in Scientifc American. The game uses a 2D grid of squares
on.a (possibly infinite) plane. Each square can be alive (black) or dead (white). A
Moore neighborhood of range r=1 is used, whereby each cell has § alive or dead
neighbors adjacent orthogonally or diagonally.
The rules are simple: If a live (black) cell has fewer than two live neighbors,

it dies (referred to 25 lonelin

£alive cell has more than three live neighbors,

it dies (of overcrowding). Ifa live cell has either two or three live neighbors, it

goes on living (with happiness). Ifa dead cell has exactly three live neighbors, it

comes alive (called reproduction).
The game proceeds in generations—one generation per time step . In the

initial generation at ¢=1, a finite number of cells are alive. In each successive

generation, cells come alive and die according to the rules—which can be

executed manually using pencil and paper, or run using & computer and

digital display.
Shown a right are 11 time steps; starting with the initial 1op pattern, the

rules are applied in each time step, resulting in a sequence of patterns that seem

al

or animated.

Exic Weisstein compiled an extensive tabulation of life forms and terms,
several of which are provided below—sorted by the number of live cells, from
three in the top row to seven in the bottom row, The Bfinker has only three live

cells that keep chang-
ing from horizontal

Blinker Weisstcin Tabulation
o to vertical in subse-
of Life Forms.
= quent time steps; it is
the smallest oscillator
Block  Tub identified by Conway.
The Glider has five live
m cells that seem to move
. diagonally on an empty
Boar Glider background afier each
g = series of four time
steps. Interaction with
Aircak e N
Snake  Ship  Cartier Bechive Barge  Otherlife forms might

morg o

result in ever more
diverse patterns.
Nota that some life
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Phenomena Model Classes Target System Models
e el | Osclaton xpert-Based Models % Predator-Prey Model 1925) 3
:,s,,lu]": 2%:,'22::?:;:‘;?‘;:‘:':5: Synchronization Descriptive Models: Indexes and Laws 28 Tinbergen’s Gravity Model (1962) 33 .
::[:r:d, e ofthand oty inping Point Predictive Models 30 Markov Chain Model (1913) 34
Siopd Phase Transition Dynamical Equations (1687) 32 Kermack—McKendrick Epidemic Model (1927) 38
& Self-Organized Griticality (SOC) Probability Theory (1713) 34 Eden Growth Model (1961) 40
Percolation Control Theory (1868) 36 Schelling's Segregation Model (1971) 4
Adaptation & Learning Fpidemic Models (1927) 38 Prisoner’s Dilemma Model (19505) L3}
Fractals Cellular Automata (1940s) 40 Braess's Paradox: Faster s Slower (1968) 3
Reaction Diffusion Dynamics Game Theory (1950) 2 The Keller-Segel Model (1970) 45
Network Growth Continuous Field Models (1952) 44 Erdds-Rényi Model (1959) 47
Network Gatek Network Models (1959) 46 Watts-Strogatz Model (1998) 47
Network Attack and Error Agent Based Models (1980s) 48 Barabasi-Albert Model (1999) 47
Diffusion/Spreading Machine Learning Models (1990s) ~ 50 Fconomics of Wealth Distribution Model (1996) 49

Schelling’s Segregation Model (1971)
101971, the economist Thomas C. Schelln
vas nformed b the ittt Ciil Right Act of 1964—sven thongh hosiog sl s lle
gal and racial prs ined highly segregated. He by

that does notneed 1o be down) and does not refect § . but self-
orgunizes theogh dynamicineracton. I 2005, Scheling wasa co-recpientofshe Nobel Prze I Economic
Sciences for his work on confict and cooperation through game- theoretic analysis

showed that individual bias can lead 10 collective bias.

Schelling’s model shows that 2 small preference for one's neighbors to be of the same race can lead to 2 large
collective bias and to total segregation. That is, a city can tip into high segregation levels (see alsa Tipping Point,
page 14) even if individuals have only mild preferences for having neighbors of their own race. The model uses
22D CA approach with two states, and a radius of r=1. The rules of the game are simple: Agents are *happy”

Random

and stay put if more than a certain percentage of their neighbors are of the same race type. Agents are otherwise
“unhappy” and move t a random vacancy.
An example is given at right for a 30% threshold
and a setup where empy cells are not counted when 000
computing thresholds. Agent A has five blue neigh- 0]
bors (out of a total of seven) and is happy. Agent B has » 300
only one blue ncighbor {out of six), is unhappy, and thus D
moves to a random vacancy.
Shown below left is 2 model with an initially random setup for two types of households (red and blue, in
similas numbers) and empty lots (white). In each round, the happiness of all household agents is computed,
and each unhappy agent moves t a random empty lot.
Rounds continue until all agents are happy with their
Iocation. Depending on the threshold, different patterns
emerge. With 2 15% threshold, 100% are happy after
only a few (often less than 10) rounds. Given a 30%
threshold, several more rounds are needed before every-
one is happy and a patchy pattern emerges. With a 75%
threshold, it takes many more rounds, often hundreds,
o arrive at a highly segregated solurion where everyone
is happy.
Vi Hart and Nicky Case designed an interactive
version of Schelling's model that lets users set double

thresholds, and ratios for two populations and empty
space, see below screenshot. Users can play to under-

30% 3%
old Threshold Threshohd

stand how harmless choices can make 2 harmful world. They also learn that in a world where bias ever existed,
being unbiased is not enough to arrive at less segregation—the past hauns the present. The model shows how
characteristics that are fized and unchanging fe.g., race or ethnicity) can become highly correlated with other

characteristics that are mutable (e.g., education or income)
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Model Questions Overview

@ Geospatial Models—“Where”

Geospatial positi significant i don dif and collaborati

@ Topical Models—“What”

& Network Models—“With Whom”

Given the constraints discussed in the previous six spreads, how can rich data
and validated models be used to provide actionable insights for different deci-
sion-makers? The remainder of Part 3 presents an overview of key questions,
four ESTP domains (education, science, technology, and policy), and three scales
(micro, meso, macro); examples are then given for all 12 domain-scale combi-
nations. This Atlas expands on Atlas of Knowledge—which introduced tempo-

ral, peospatial, topical, and network methods to answer when, where, what, and
with whom types of questions, respectively—by helping readers answer questions
regarding why or how. For instance, why is past system performance an indicator
for future performance, o how does knowledge about the evolution of a system
help us understand the future states of that system?

© Temporal Models—“When”

Al of Science and At of Kncusledge both focused
on descrptive models. Several st and vis-

table that lists numbers for electric vehicles (EVs)
and plig-in bybrid EVs (PHEV). Ln 2009, that

there are able to p
developments; the remainder of Part 3 features
many mare models and visualizations that aim to
forecast the future.

For example, regression modeks can be used to
project current trends into the fiture (sce Maching
Learning Models, page 50; and Aelas of Knowledge,
Seatistical Studies, page 44).

Alan L. Porter and team employed  combina-

Al-yearps of used
data by the Intemational Energy Agency (IEA),
with 2 madeling approach that considered different
market sepments and technology solutions. As of
2019, EVs had 2 2.8% car market share, sccording
to MeKinsey's proprietary Electric Vehicle Index
(EVT). In 30 years' time, it will b interesting to

Some countries are landlocked, with no direct
slands,
making them difficult or even impossible to reach
during the vinter season (see ORBIS, page 154).
Countriesthat are centrally located are more
likely to be natural

access to marine travel routes. Others

‘and thus infiuencing the dynamics and outcomes of
collaboration {sec also Alan Curve, page 25)

‘Their model aims to capture (1) the physical
o functional distance among occupants of a butlt
environment; (2) the mechanisms of action, such as

G
impacts individuals, corporations, and regions in
et of e oo e they e

serendipity, i bilization, and aware-

ness; and (3) science examples, as shared equip-
mentand facilities may facilitate interdisciplinary

Many models aim to repe
in which different agents operate (see Modeling
Overview, page 12). Some models present multiple
and possibly nested spatial envisonmens (2.,
counties, states, countries, continents, the world).
Part 2 discussed models that can represent
discrete space, such as grids or latices, (see Cellu
Automata, page 40; and Network Modls, page

ocation
members, and the location of principal iy
tors offices relative to labs.
“The model also captures the state spaces of
<ollaboration in terms of (3) scientific concepts
shared, (b sacial links, (<) institutional units and

46). Tt also coversd models
space and can be used to predict human migration
‘or the diffusion of information {see Continuous-
Field Models, page 44); Spatially explicit models
are also used in traffic optimization (see Braess's
Paradox: Faster Is Slower, page 43).

Work by Jason Owen-Smith oes

“The model was valdated using. zmpm[:l data
from 172 faculty and research staff members in
three buildings on the University of Michigan
<campus. Study results show the dramatic impact of
co-locaion on the increased ikelihood o frming,
new For

ane step further in that they not only study the
impact of existing space on system mumm. but
o wse ional predictive

examgple, researchers who occupy the same build-
ing are 33% more likely to form new callabarations

desirable system

compare the 2050 predictions with the fig
actual sales.

behavior. Specifically, the team aims to predict the

than researchers who oceupy different buildings;
and researchers who occupy the same floor are 57%
more likely to form new collaborations than thase

tion of expert opinion modeling (see Expert-Based ‘Temporal studies of Twitter data and ather real- collaboration patterns that are ikely to emerge from who occupy different buildings.

Models, page 26) and technology mining to fore- time data were discussed in Adas o pas different The work i Interesting! ofices
sales from 1 i th 1 was il -

2050, The graph below sh dicted comp s can be used . i coordination costs, and co-location increases paths; see the figure below of a floor plan and the

it world sales for different vehicle types, witha

system evelution or information diffusion over time.

PHEV 005 07 47 120 246 548 49.1
EV 003 05 25 44 93 251 522
W Hydrogen Fusl Cell ™ Diese!

Compressed Natural Gas
® Diesel Plug-in Hybrid
= Diesel Fybrid

Passenger LDW sales (

= Electric m Gasoline Plug-in Hybrid
W Liquid Petrolem Gas/ M Gasoline Hybrid
Gasaline
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productivity; passive contacts increase as individu-
als share more required paths through their space,

overlap of two persons’ pathways from their offices

1o research lab spaces.

Person 2's paths pass by Person 1’ door.
¥ Person 1s pachs do NOT pass by Person 2's door.

Person 1s Area
T Person 25 Area
1veal Overlap === Parh Overlap o Closest Elevaror

and Restroom

Persan 1's Path @ Office
Person 2's Path 01 Research Lab

be modeled as ag behar-
ot can alo e representd by topical maps, such
the same classes are more likely to talk. Researchers as the map shown in

in the same discipline are more likely to collabo-
cate. Tn general, the academic or professional world
is organized into clusters of people, courses, jobs,
industry sectors, and policy areas, according to topi-
cal similarity.

Different ESTP toic areas have different
dynamics. For example, scholarly domains that
publish results via e-prints are much faster in

g resuls than those that mostly
interdisciplinary scholarly publi-
cations have a broader impact than those within
one domain (see Interdisciplinary Collaborations
Lead to Higher Scientific Impact, page 93).
Similarly, different industry sectors are differently
impacted by stock-market developments and alsa
by technology innovatian, such as Al (see Macro:
Technology, page 94).

Global pandemics ike COVID-19 have partcu-
lar implications for different demographics, indus-
try sectors, and associated unemployment rates (see
Meso: Policy, page 88). Many types of literacy are
taught, all variously impacting workens skills port-
folios (see Micro: Education, page 74).

Models should aim to take the topical traits
of literacy types, sclentific & s industry

and attributes
(e, the mumber of node nmgl\hﬂﬁ) have 2 major

Callaborations Lead to Higher Scieatific Impact,
page 93.

As described on page 54, Shahar Ronen and
colleagues studied three global l:nglugt mwem
(GLNs)

patterns as well as on network
growih e Nework Models, page 46,

Many network studies have been run and visu-
alizations designed to further the understanding of
social, [nHlImnnnn ,ctation, and trde networks.

2 Resul such factors
ditons of Wikipedia, and Twitterto under- as mrz\tmihlp and co-authorship networks on
stand the influence of various i P Ties

in Scientific Careers, page 77; and Best Author
Combintions for Innovation, page §5).
Networks change over time. The figure below
by Yancer Bar-Yam shows the rising complexity
in network topologies, sizes, and interconnectiv-
ity patterns, from early-human hunter-gatherer
communities t the glabal networked civilization,
As time progresses, specialization and diversity
ncrease, ye natwork fficiency is maintained via

g
systems on the visibiity and possible impact of its
speakers. Network layouss of the Wikipedia and.
Tiwitter GLNs are given below. The nodss repre-
sent different languages and are each labeled with
the appropriate language name, color-codzd per
language family, and size-coded per the number
of people that spealk that language. The links
denote which languages are co-spoken, with link

weight indicating the number of co-occurrences.
In both networks, English is a plobal hub, with a
bandful of intermediate hub languages, inchuding
Spanish, German, French, Russian, Portuguese,
and Chinese. Languages that are found in the
center of the network contribute to the visibiliy
oFits speakers and the global popularity of the
cultural content they produce. For example, schol-
arly papers written in English are more likely to be

read, cited, and than papers writien

sectors into account in order to better capture
world system behavior. Topical information might

in languages that appear in the outer periphery of
the networks.

Twitter

Longuage Family Population Link Weight and Color
Rorossare | coomn W morcoos @ 1o P "
Aoz Boroespagrs [ omer O omicn
[l o || oaavison [ seomsion @) 1ommon M — MO
) e . iy o
Nuvcresion [rcoticpen |10 o @ : e S
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and more lateral links.

Complexity
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il
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Complexity
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Control

structure

L
Tvbrd Networked
dvilization

Comansicatien

specialization

Mierarchy »° "

eral

Part 3: Madels in Action | 69

32



Reducing Human Bias

Humans tend to be subjective, often acting according to biased opinions rather than

objective facts. Cognitive biases are systematic deviations from normative ratio-

nality in judgment, as studied in fields like psychology and behavioral econom-
ducibl

dini

show ane particular trend that i reversed when
those ind

tion of an in-group based on out-group criteria (ie.,
when individuals outside of an in-group devalue
aspects in which they fare poorly relative to that
in-group, but overvalue aspects in which they fare
well relative to their out-group). Sampling errors
anyoverta ;umqu.m ata e, model orvisual-

ics. While many such biases have been

research, controversies abound as to their possible origins “and causes, In order to
make objective, well-informed decisions, we need to understand and proactively
neutralize existing biases. This spread explains some of the known biases, beliefs,
and behaviors, with suggestions for how to counteract them. Ultimately, biases
and beliefs have a major impact on life satisfaction. Understanding our own
biases is an important step toward experiencing a fulfilling present and future.

Al models are wrong, but some are usefil.
George Bax

To Err Is Human

“Though human brain are powerful and efficient,
huraan extor inevitably occurs a every evelof soci-
ety. Some errors are systematic and systemic. Many
areself reinforcing via posiire or negativ fesdback
cycles (see the figure belaw and Modeling Goals,
page 14). Frequently, specific individual or institu-
tionalsctions (., funding of highly fanded schal-
ars) influence the structures and/or dynamics of the
environment e, more funding created for already
highly funded scholars), leading in turn to rewards:
for potentialy erroneons actions (e g, fvoring older
5. younger scholars hus, oklerscholars are able to

and theoretically grourded suggestions for improve-
ment. In-depth discussion on this subject, with
significant examples and theoretical models, can be
found in Nevwarks, Crouds, and Markets: Reasoning
abouta Highty Connested World (2010) by David
Easley and Jon Kleinberg.

Data Bias

tion de d are nearly
impossible to detect and correct unless the proper
documentation of data sources is secured and data
preprocessing is performed.

Gender Bias

“The well-known bias of gender stercotyping hus
proven pervasive and diffcul to overcome. Sheryl
Sandberg, author of Laan n: Women, Hork, and the
Wil 1o Lea (2013), confirms that wornen are called
bossy when which

53533y

"
endogenous belief that girls are not as good as
boys in math and science; even when girls perform
similarly 10 bays, thelr work may be graded more
critically. Since that unconscious bias in tur has a
profound and systematic effect on whether female
students pursue deprees and professions in those
fekds, such endogenous belief leads o self-fulfill-

men are considered assertive. Sandberg, with psychol-
ogist Adam Grant, also points out how the workplace
expects a man to be ambitious, but a woman to be
helpful; ergo, if a man does not help, he s “busy;” but
ifa woman does not help, she i “selfish " Similarly,
the words used to describe male and female college
faculty differ greatly. In analyzing the language
‘of about 14 millian reviews on RateMyProfessors.
com, Ben Schmidt found that, while male profes-
cypically regarded as brilliant, nd

Any syste ith data, which
is gathered by surveying human experts, retrieved
from databases or the Internet, and collected via
16T sensors or ather sources. Using the most appro-
priate and highestqalty data s cracialfor ariv-

pact, while
afforded resources to perform high-end research,
which falsely confirms funding of older scholars as
the best srategy for maximiring the mumber of cita-
tions per dollar spe).

Stuse Action

Extensive literature exists on why human judg-
ment fails, particularly when long-term or lobal
decisions are at stake. In addition, considerable
research aims to uncover why people violate norms of
action through social mishehaviors (e, conforming.
with false majority judgments or faling o help those
in need) and norms of reasoning through cognitive
errors (e, polarized black-and-white thinking or
overgeneralization). The goalis enhanced under-
standing of the bases for good behavior and accurate
judgment, coherent explanations of occasional lapses,

172 | Parts Envisioning Desirable Futures

. Unfortunately, imperfect

data s frequently used with confidence.

Convenience sampling s often employed, drav-
ing on 2 part of the population that is close at
hand—such as colleagues, friends, or neighbars
with experlences and opinions similar to those of
the data collector—so that findings are thus more
likely to reflect the views of the data collector than
of the general population. This kind of nonproba-
bility sampling can be useful for pilot testing, but is
often not 2 good choice for desipning, parameriz-
ing, or validating 2 model for a target system.

Other common data sampling mistakes include:
selective attention, whereby 1 person
capacity allows fir only certain stimul o be noticed
while others are tuned out, when several occur
simultaneously; base-rate neglect, when a person
fcuses heavily on new information without prop-
erly taking into account original o base assump-

tions; confirmation biss, whereby new evidence is
interpreted according to existing beliefs or theories;
Simpson's paradox, in which scparate sets of data

knowledgeable, female professors are characterized
asbassy, annoying, disorganized, and even beautifil
e ugly. Furthermore, students generally give profes-
sors much higher ratings when they believe them tn
be male, regardless of their actual gender.

Gender bias regularly factors into performance
reviews and selection committees—wamen are far

more likely than men 1o receive critical foedback,
and women leaders in particular are frequently
described as abrasive, agpressive, and emotional.
Biasis also present in the grading of students’
assignments. Many teachers seem to have the

' prop!
Gender bias is also present in blinded grant
proposal reviews, as the fact that women tend 1o use
“weaker” language (o2, “we hope to” instead of “we
will’y eesults *might be” rather than "will be”) leads
to their proposals being dismissed for sounding less

confident than those authored by males.
Nevertheless, in the past few decades, blind
hiring practices have led to progress—namely in
symphony orchestras. Though now widespread, the
practice of using screens in anditions to conceal
candidates from the jury was gradually imple-
mented. As a result, the percent of female musicians
in the five highest-ranked U.S. orchestras increased
from 696 in 1970 to 21% in 1993; ane study found
that blind auditions accounted for up to 46% more
fomale musicians by 1996. However, blind recruit-
ment s not viable in most industries; instead, many
institutions require members of job search commit-
tees to attend professional training sessions on
existing biases and how to remedy them.
Systematic, proactive efforts toward ensuring

more equitable outcomes have resulted in an increas-

[ 225, o |
A, kY
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el “titennile
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and his team) can make
data access more effi-
cient, comprehensive,
and entertaining, while
improving data-driven
decision-making by
professionals, policymak-
ers, and citizens. The aim

of creati ‘mare humanlike

to womenin the science, technology, enginsering,
and mathematics (STEM) fields {see top graph on
oppasite page}—yet much wark still needs to be
done to Increase the number of praduate and PhDD
degrees awarded, and the number of tenure-track
and leadership positions held by women.

Generational Bias
“There are presumed o be major differences scross
generations in terms of education, work ethics,
tech-savviness, and cost-cfectiveness. The bot-
tom figure an lft graphs the average view of 200
hiring managers on whether Generation Xeers
(born 19451980) or millenrials (bom 1981-1996)
are more likely t have cortain qualities relevant

0 performance and the workplce. Generational
diferences and associated biases can easily lead

o miscommunication and misunderstands

personal and professional life. Disparites across

s in

e the information- desk android on page 179) i
o fully resolve the experience of “uncanny valley™
(when a robot’s imperfect human reseenblance

Jings). Extensive interaction

logical cheice by consumers and by firms, and the
localized nature of crime and political movements.
In 219605 study on the drawing power of differ-
ent-size crowds, psychologists Stanley Milgram,
Leonard Bickman, and Lawrence Berkowitz had a
group of up 10 15 people stand on a street corner,
with a select number staring up at the sky; they
then counted how many passershy stopped and
also looked up at the sky. When only one person

tion as it impacts motivation, engagement, perfor-
mance, and happiness.

“The figure below, from The Glabal Campenesvencss
‘Repore 2018 by the World Economic Forum
(WEF), shows life satisfaction for 135 coun-
tries, as measured on Camtril's Ladder of Life
Scale—whereby participants, using the numbers
@ {for worst possible 11t} to 10 (best possible lis),
answered the question, “How satisfied are you with
" Finland, Denmark,

in a group was staring upward, very
stopped; with five people staring upward, more pass-
ersby stopped but few looked ups with all 15 people

with simulated game characters, consistent use of
life-tracking wearables, and reliance on smart-
phones can all offer a profound sense of connec-

y passersby stopped
and also looked up at the sky. The experimenters
concluded that social pressures, or social conformity,
. Extensive

tivity; they seem to readily become part of our
identity, such that being withaut them can leave
us with a deep sense of ansiety or loss.

Self-Perpetuating Bias

As discussed easlier in “To Ere Is Human, deep-
seated beliefs in how the world works can inform
expectations that lead to self-fulfilling prophecies:
Ifone isinclined to grasp & particular situation in
a negative way, ane might truly have 2 negative
experience if that same scenario is seen in a posi-
tive light, it may well have a positive outcome. The

multiple generations (e g., betwes
their grandparents) can be even more challenging.
However, understanding differences is the first step
toward counteracting and overcoming them.

Own-Species Bias
Also called speciesism, this prejudice holds one’s

ly, humans favor-

has then further g
mmng beliefs in how the world works.

“That premise i central, for example, to Jayson
L. Lu<k and Anne Rozan's research on the deep

genera adice et on how o nestralze the nega-
tives of peer pressure, such as by malking friends with
those wha resist peer pressure, asking for help when
necessary, and cither getting out of the problem situ-
ation or providing your own positive pressure.
However, humans are social animals, and our
habits are reinfarced by those we surround oursclves
with. Nicholas A. Christakic and James H. Fowler
showed that behaviors such as smoking, obesity,
and cooperation, or even feelings of happiness, can
spread via social networks. For example, 2 married
person's chances of smoking were decreased by
67% when their spouse quit smoking; and people
surrounded by cooperative colleagues are likely to be
more cooperative. Study results have implications for
the composition of teams, clinical and public health

‘that many US. hi
about the safety of genetically modified (GM)
food, which in turn has implications on their
consumption of it. Using survey data, the experi-

3 pe
species), even if their needs are equivalent.

In aworld where humans and Al-empowered
robots and other machines live, learn, and work

model in which
beliefs about labeling policy, the safety of GM
food, and the willingness to consume GM food

werventions, and ! relationship farmations.
Herd behavior also leads to the “paradox of

unanimity™—as described by Derck Abbott for

Lachlan J. Gunn et al —whereby cortainty is not

definitively relisble. The researchers found, for

instance, that in a police lineup, the probabil-

ity of an individual's guilt increases with the first

l\wrwrn and the United States appear 10 have the
highest Global Competitiveness Index (GCI) 40
scores, while the Republic of Burundi, landlocked
in the Affican Great Lakes region, seems to.score
lowest. As the WEF states, the fact that
faction accounts for over two-thirds of differences
per the GCI 4.0 scores is remarkable iven how
vastly distinct the 135 nations are otherwise, in
terms of culture, history, and politics.

satis-

Honw can positive cogaitive bias be introduced
to educational, scholarly, industrial, or government
environments to arrive at even higher GCI values?

Lifesatistaction {Deworst possie ife, 10sbest passible Eiel,
2052017
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Exposing Biases
P

together, it becomes important to
s

are endogenously determined. They then sssessed nanimous ions, but then of their own biases and
d Ath Jif h imous i -y make decssions objectively: Project
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The Future of Learning & Work Workshop

Open Digital Future. Perspectives on data at the intersection of education and job markets.
Toward a new role of visual and learning analytics.

https://cns-iu.qgithub.io/workshops/2022-03-14-futurium
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https://cns-iu.github.io/workshops/2022-03-14-futurium

Katy Borner
@katycns

Visualizing big science projects, with Filipi N. Silva and
Stada Milojevi¢, is out in @NatRevPhys, see rdcu.be

/cyEGBH. Explore interactive vis at bigscience.github.io
then use code to map your very own projects.
@IUNetSci @IULuddy @cnscenter @ieeevis @issi_pres
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PERSPECTIVES

Visualizing big science projects

lead to both scientific and technological
superiority """, In addition, big science has
been propelled into the general public’s

Katy Bdrner(, Filipi Nascimento Silva and Stasa Milojevié

Abstract | The number, size and complexity of ‘big science’ projects are growing—
as are the size, complexity and value of the data sets and software services they
produce. In this context, big data gives anew way to analyse, understand, manage
and communicate the inner workings of collaborations that often involve
thousands of experts, thousands of scholarly publications, hundreds of new
instruments and petabytes of data. We compare the evolving geospatial and
topical impact of big science projects in physics, astronomy and biomedical
sciences. A total of 13,893 publications and 1,139 grants by 21,945 authors cited
more than 333,722 times are analysed and visualized to help characterize the
distinct phases of big science projects, document increasing internationalization
and densification of collaboration networks, and reveal the increase in
interdisciplinary impact over time. All data sets and visual analytics workflows are
freely available on GitHub in support of future big science studies.

‘Big science’ today is international,
interdisciplinary and inter-institutional.
Big science projects are anchored around
expensive, large and complex instruments,
they can run for several decades and they
involve thousands of experts. Big science
projects make breakthroughs not only in
basic research but also in innovation that
impacts economy and solves challenging
societal needs. As more science fields move
towards the big science model of knowledge
creation, the lessons learned from previous
successful endeavours become essential.
This is because big science projects are

not just larger and more expensive than
other projects but they require specific
organizational and management structures.
Different knowledge production processes
also bring new research roles, changes in the
division of labour and adjustment in formal
and informal scholarly communication.
One way to communicate these aspects

of big science, on which this Perspective
focuses, is to use various visualizations,
Visualizations in this Perspective — and
interactive online ones — show that big
science projects go through phases with
different input needs, expected outputs
and impacts. As big science projects
mature, their collaborations densify and
internationalize; at the same time, scholarly
impact increases in terms of citation counts
and interdisciplinary reach.

NATURE REVIEWS | PHYSICS

Big science as a phenomenon can be
traced all the way back to fifteenth-century
cartography and astronomy’~ or to
eighteenth-century natural history
expeditions™, Nineteenth-century extensive
archival projects (the Corpus Inscriptionum
Latinarum and the Carte du Ciel) had many
characteristics of present-day big science in
terms of funding (state backing by Prussia
and France), workforce and timescale
(requiring more than a lifetime of effort),
and were associated with the initial coinage
of the term "big science’ (or, originally,
Gorswi haft) by classical philologi
and Prussian Academy of Sciences member
Theodor Mommsen”. The better known and
more immediate precursors of what became
known as big science are the establishment
of the University of California cyclotron by
Ernest Lawrence in the 1930s for energy
research” and the World War Il Manhattan
Project”. The term ‘big science, however,
was introduced in the 1960s by Alvin M.
‘Weinberg™' and Derek J. De Solla Price’ to
describe post-World War I1 developments
in physics that built large and very expensive
instruments (reactors and accelerators),
accompanied by the growth in scientific
team sizes working on nuclear-related
research’. Making advances in nuclear and,
later, particle physics became part of the
competition among superpowers, with
the expectation that breakthroughs would

by the founding of the National
Aeronautics and Space Administration
(NASA) and its active and publicly visible
space programme”, Although most of
the early focus regarding big science was
on physics, as early as 1965, Weinberg”
proposed that biomedical science and
biomedical technology were ready to enter
the ‘big biology” era. This entry was made
only in the 1990s with the Human Genome
Project (HGP), the first big science projectin
biclogy . The expansion of the big science
mode of knowledge production to other
areas of science, such as big biology, brought
with it new organizational and collaborative
forms, such as ‘networked' science enabled
by information and communication
technologies'' and some debates as to
whether such coordinated efforts can be
called big science™"",

Big science accentuated the central
role instruments play in the development
of science as “engines of discovery™”,
Historically, instruments such as the
telescope, the microscope and the air pump
opened new vistas and led to scientific
revolution, fundamentally changing the
nature of scholarship ™. The quest for
increased sensitivity and accuracy of
instruments led to their constant evolution,
making these ever more expensive tools”*
obsolete fairly quickly . This process has
been described™ as ‘tinkering) in which
“lineages of technology” are adapted
and combined, leading to networks, or
‘genealogies’ of technologies. However, the
power of instruments, such as a scanning
tunnelling microscope, can be realized
only when they engage a community of
researchers in what has been called ‘an
instrumental community; eventually leading
to the formation of new scientific fields,
such as nanotechnology™, Furthermore,
the relationship between science and
technology is complex and interdependent,
with science also contributing to technology
developm

Early scientists, such as Galileo
Galilei and Isaac Newton, engaged in
instrument building as well as theoretical
and experimental work™, While not
without precedent, instrument building
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Indiana University Bloomington will host the
International Society of Scientometrics & Informetrics
Conference (ISSI)

July 2-5, 2023

. https://cns-iu.github. 1o/workshops/2023 -07- 02 1551/




24 Hour Science
Map Event

https://24hoursciencemap.info

Dec 11, noon - Dec 12, noon ET, 2021
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24 Hour Human Reference
O W
Atlas Event

https://24hoursciencemap.info

Dec 10, noon — Dec 11, noon ET, 2022



Overview

Data Visualizations of Science
The Science of Data Visualization

Open Challenges
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INDIANA UNIVERSITY
c N S Cyberinfrastructure for SCHOOL OF INFORMATICS,
Network Science Center COMPUTING, AND ENGINEERING

Data Visualization Literacy

Borner, Katy, Andreas Bueckle, and Michael Ginda. 2019. Data visualization literacy: Definitions,
conceptual frameworks, exercises, and assessments. PNAS, 116 (6) 1857-1864.

Borner, Katy (2015) Atlas of Knowledge: Anyone Can Map. The MIT Press.
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Data Visualization Literacy (DVL)

Data visualization literacy (ability to read, make, and explain data visualizations)
requires:

« literacy (ability to read and write text in titles, axis labels, legends, etc.),

« visual literacy (ability to find, interpret, evaluate, use, and create images and visual
media), and

* mathematical literacy (ability to formulate, employ, and interpret math in a variety
of contexts).

Being able to “read and write” data visualizations is becoming as important as being able to read
and write text. Understanding, measuring, and improving data and visualization literacy is
important to strategically approach local and global issues.

Cyberinfrastructure for
c N S Netwaork Science Center 4 1



DVL Framework: Desirable Properties

* Most existing frameworks focus on READING. We believe that much expertise is gained
from also CONSTRUCTING data visualizations.

» Reading and constructing data visualizations needs to take human perception and
cognition into account.

* Frameworks should build on and consolidate prior work in cartography, psychology,
cognitive science, statistics, scientific visualization, data visualization, learning sciences,

etc. in support of a de facto standard.
* Theoretically grounded + practically useful + easy to learn/use.

* Highly modular and extendable.

42
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DVL Framework: Development Process

* Theinitial DVL-FW was developed via an extensive literature review.

» Theresulting DVL-FW typology, process model, exercises, and assessments were then tested
in the Information Visualization course taught for more than 17 years at Indiana University.
More than 8,500 students enrolled in the IVMOQOC version (http://ivmooc.cns.iu.edu) over
the last six years.

* The FW was further refined using feedback gained from constructing and interpreting data
visualizations for 100+ real-world client projects.

* Data on student engagement, performance, and feedback guided the continuous
improvement of the DVL-FW typology, process model, and exercises for defining, teaching,
and assessing DVL.

* The DVL-FW used in this course supports the systematic construction and interpretation of
data visualizations.

CNS::
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http://ivmooc.cns.iu.edu/

Data Visualization Literacy Framework (DVL-FW)

Consists of two parts:

DVL Typology DVL Workflow Process
Defines 7 types with 4-17 Defines 5 steps required to
members each. render data into insights.

Deploy

Insight Needs Data Scales y isualizati Graphic Symbol: Graphic Variables Interactions
« categorize/cluster +nominal « statistical « table « geometric symbols  « spatial *zoom
« order/rank/sort « ordinal * temporal « chart point position « search and locate
« distributions (also  «interval + geospatial  *graph line « retinal « filter

outliers, gaps) « ratio « topical *map area form « details-on-demand
* comparisons « relational « tree surface color « history Stake-
« trends (process * network volume optics « extract

and time) « linguistic symbols motion «link and brush hol d ers
« geospatial text * projection
« compositions numerals « distortion

(also of text) punctuation marks
« correlations/ « pictorial symbols

relationships images

icons

statistical glyphs

Cyberinfrastructure for
c N S Netwaork Science Center 44



Data Visualization Literacy Framework (DVL-FW)

Consists of two parts that are interlinked:

Interaction Types

Deploy

DVL Typology +
DVL Workflow

Graphic Variable Types e
Process

Insight
holders Types

Graphic Symbol Types e

Acquire Analyze Visualize Visualization Types o

Data Scale Types @e¥ Analysis Types

Cyberinfrastructure for
c N S Netwaork Science Center 4 5



a Interaction Types

Deploy

Graphic Variable Types e

Insight
Stake- Need
holders Types

Graphic Symbol Types o

Q Data Scale Types e Analysis Types

CNSg:

46




Interaction Types

Deploy . Graphic Variable Types
Design
Data
Translate Overlay
Insight I Graphic Symbol Types
Stake- Need
holders Types
g Pick
Reference
System Visualization Types

Operationalize

Analyze Visualize

Data Scale Types Analysis Types

CNSg:

47




Interaction Types

Deploy S Graph:c Variable Types
Data

Translate Overlay

Insight I
NELGE Need

holders Types
P Pick

Reference

System
Operationalize

Analyze Visualize

Data Scale Types Analysis Types

CNSg:

48




Data Visualization Literacy Framework (DVL-FW)

Implemented in Make-A-Vis (MAV) to support learning via horizontal transfer, scaffolding,
hands-on learning, etc.

= Make-A-Vis i

Data

~ B ISl Publications: (CSV)Preprocessed-wos

Title Authors
—

~ 8 Journals: (from ISI Publications)
Name
BMCEVOLBIOL
FEBSJ

NAT PHYS

C N S Cyberinfrastructure for
Netwaork Science Center

Journal

#Papers
1
2

3

Year

#Cites
7
0

18

#Cites

First Year
2006
2005

2005

@ Make Visualization

e Select Visualization Type
Temporal

v o Bar Graph

Scatter Graph

Last Year o

2006

Geomap Scimap
2005
2006

Select Graphic Symbol Type(s)

Select Graphic Variable Types

Temporal Bar Graph €@ @ 0

Application NN
Roborics

Computer

analysis [N
sion
o [
Alebraic Geomsy —
Parts
Capacity -
srrt
form
web
Computing - N
Making ses—
uiing S
Education -

Sepre _

1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Machine

49



Typology of the Data Visualization Literacy Framework

Insight Needs

* categorize/cluster

» order/rank/sort

+ distributions (also
outliers, gaps)

* comparisons

* trends (process
and time)

* geospatial

* compositions
(also of text)

* correlations/
relationships

Data Scales
* nominal

* ordinal

s interval

* ratio

Analyses

* statistical
* temporal
* geospatial
* topical

* relational

Visualizations

* table

* chart

* graph

* map
*free

* network

Graphic Symbols Graphic Variables
* geometric symbols  « spatial

point position

line * retinal

area form

surface color

volume optics
* linguistic symbols motion

text

numerals

punctuation marks
* pictorial symbols

images

icons

statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 25.

c N S Cyberinfrastructure for
Netwaork Science Center

Interactions

*zoom

* search and locate
* filter

* details-on-demand
* history

= extract

* link and brush

* projection

* distortion

50


http://scimaps.org/atlas2

Typology of the Data Visualization Literacy Framework

Insight Needs

* categorize/cluster

» order/rank/sort

+ distributions (also
outliers, gaps)

* comparisons

* trends (process
and time)

* geospatial

* compositions
(also of text)

* correlations/
relationships

Data Scales
* nominal

* ordinal

s interval

* ratio

Analyses

* statistical
* temporal
* geospatial
* topical

* relational

Visualizations

* table

* chart

* graph

* map
*free

* network

Graphic Symbols
* geometric symbols
point
line
area
surface
volume
* linguistic symbols
text
numerals
punctuation marks
* pictorial symbols
images
icons
statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 26-27.

CNS

Cyberinfrastructure for
Netwaork Science Center

Graphic Variables

Interactions

*zoom

* search and locate
* filter

* details-on-demand
* history

= extract

* link and brush

* projection

* distortion

0


http://scimaps.org/atlas2

Bertin, 1967

selection

order

quantity

association

c N S Cyberinfrastructure for
Netwaork Science Center

Wehrend
& Lewis,
1996
categorize

rank

distribution

compare

correlate

Few, 2004

ranking

distribution

nominal
comparison
& deviation

time series
geospatial

part-to-
whole

correlation

Yau, 2011 Rendgen &
Wiedemann,
2012
category

differences

patterns time

over time

spatial location

relations

proportions

relationships  hierarchy

Frankel,
2012

compare
and
contrast

process
and time

formand
structure

Tool: Many
Eyes

compare
data values

track rises
and falls
overtime

generate
maps

see parts
of whole,
analyze text

relations
between
data points

Tool: Chart
Chooser

table

distribution

comparison

trend

composition

relationship

Baorner,
2014

categorize/
cluster

order/rank/
sort

distributions
(also outliers,

gaps)
comparisons

trends
(process and
time)

geospatial

compaositions
(also of text)

correlations/
relationships

52



Typology of the Data Visualization Literacy Framework

Insight Needs

* categorize/cluster

» order/rank/sort

+ distributions (also
outliers, gaps)

* comparisons

* trends (process
and time)

* geospatial

* compositions
(also of text)

* correlations/
relationships

Data Scales
* nominal

* ordinal

s interval

* ratio

Analyses

* statistical
* temporal
* geospatial
* topical

* relational

Visualizations

* table

* chart

* graph

* map
*free

* network

Graphic Symbols Graphic Variables Interactions

* geometric symbols  « spatial *zoom
point position * search and locate
line * retinal * filter
area form * details-on-demand
surface color * history
volume optics * extract

* linguistic symbols motion * link and brush
text * projection
numerals * distortion

punctuation marks
* pictorial symbols

images

icons

statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 30-31.

C N S Cyberinfrastructure for
Netwaork Science Center

53


http://scimaps.org/atlas2

Cyberinfrastructure
Netwark Sci

Visualization Types

Chart

Graph

Map
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e Center
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Dendrogram
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.
.
.
3
.
.
3
3
.

Temporal Bar Graph

Force-Directed Network Bimodal Network

N
02%  24%  46%  68% 810% >10%

Choropleth Map  Proportional Symbol Map



Visualize: Reference Systems

Visualization Types
* table
Table Graph Map Network : char’:]
columns by X-y latitude/ local ) rgnr:E
rows column coordinates longitude similarity . network layout
XY ] . enode e
T 1 o
row cell v v "
T 1 o
@
 J
X X

CNS::
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Visualize: Reference Systems, Graphic Symbols and

Variables

- 80000 LA % Graphic Variables o

LU %o © - \ [y

E > o N

>

@)

B b J \ & ol

() :..0 00 ® "‘ 'f

o Lo ‘ % Graphic Symbols o
S
c £ -
% :% - ‘ Visualizations o
« Scatter Graph Geospatial Map UCSD ScienceMap  Network
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Typology of the Data Visualization Literacy Framework

Insight Needs Data Scales  Analyses

* categorize/cluster *nominal * statistical

» order/rank/sort * ordinal * temporal

+ distributions (also  *interval * geospatial
outliers, gaps) * ratio * topical

* comparisons * relational

* trends (process
and time)

* geospatial

* compositions
(also of text)

* correlations/
relationships

Visualizations

* table

* chart

* graph

* map
*free

* network

Graphic Symbols
* geometric symbols
point
line
area
surface
volume
* linguistic symbols
text
numerals
punctuation marks
* pictorial symbols
images
icons
statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 32-33.

C N S Cyberinfrastructure for
Netwaork Science Center

Graphic Variables
* spatial

position
* retinal

form

color

optics

motion

Interactions

*zoom

* search and locate
* filter

* details-on-demand
* history

= extract

* link and brush

* projection

* distortion
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Typology of the Data Visualization Literacy Framework

Insight Needs Data Scales  Analyses
* categorize/cluster *nominal * statistical
» order/rank/sort * ordinal * temporal
+ distributions (also  *interval * geospatial
outliers, gaps) * ratio * topical
* comparisons * relational
* trends (process
and time)
* geospatial

* compositions
(also of text)

* correlations/
relationships

Visualizations

* table

* chart

* graph

* map
*free

* network

Graphic Symbols
* geometric symbols
point
line
area
surface
volume
* linguistic symbols
text
numerals
punctuation marks
* pictorial symbols
images
icons
statistical glyphs

Borner, Katy. 2015. Atlas of Knowledge: Anyone Can Map. Cambridge, MA: The MIT Press. 34-35.

C N S Cyberinfrastructure for
Netwaork Science Center

Graphic Variables
* spatial

position
* retinal

form

color

optics

motion

Interactions

*zoom

* search and locate
* filter

* details-on-demand
* history

= extract

* link and brush

* projection

* distortion

58


http://scimaps.org/atlas2

CNSg:

Graphic Variable Types

Position: x, y; possibly z

Form:

» Size

* Shape

» Rotation (Orientation)

Color:

« Value (Lightness) -

« Hue (Tint) Il 1

« Saturation (Intensity) . e,

Optics: Blur, Transparency, Shading, Stereoscopic Depth
Texture: Spacing, Granularity, Pattern, Orientation, Gradient

Motion: Speed, Velocity, Rhythm

More

Accuracy

Less

Position
e O

Length

Angle Rotation

L L /S

Area
o O

Volume

coC D

Color Hue Color Value Color Saturation

L L OGN ®
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INDIANA UNIVERSITY
@ c N S Cyberinfrastructure for LUDDY SCHOOL OF
Network Science Center INFORMATICS, COMPUTING, AND ENGINEERING

.' g CEOS) online course focused on understanding and creating data visualizat

translate complex data into actionable insights.

( FLYER\‘ REGISTER FOR JAN 9-FEB 19, 2023 ( FAQS\‘
o > ' Sy

Learn from Experts Evolve Yourself Make a Difference
Connect with industry professionals and leading Gain forever knowledge and skill-up in powerful data Embrace data-driven decision-making in your
researchers. visualization tools. personal and professional life.
https://visanalytics.cns.iu.edu US Employers which have sent students include

The Boeing Company, Eli Lilly, DOE, CDC, NSWC Crane.
CNS s


https://visanalytics.cns.iu.edu/

Overview

Data Visualizations of Science
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Open Challenges
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Accelerating Behavioral Science Through Ontology
Development and Use

Provide feedback on

Scientific ontologies are systems and/or knowledge structures that specify concepts of science with iy
is projec

Description agreed-upon labels and definitions and provide a framework for complex relationships among the
Committee concepts. Ontologies support efficient knowledge generation, organization, reuse, integration, and
Sponsors analysis. The goal of this consensus study is to review the role of ontologies in the behavioral sciences,
Past Events assess their potential to accelerate behavioral science research, and identify gaps and challenges, and

https://www.nationalacademies.org/our-work/accelerating-social-and-behavioral-science-through-ontolo ment-and-use
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Envisioning SPOKE:
3M Nodes and 30M Edges

The Scalable Precision Medicine Oriented Knowledge Engine (SPOKE) graph federates about 19 open datasets into
a public data commons of health relevant knowledge. This site lets users explore the massive SPOKE knowledge
graph

The site was designed for two ser groups: (1) novice users interested to understand the coverage and quality of
SPOKE data and (2) expert users interested to analyze and optimize the interlinked knowledge graphs in SPOKE.

The overview visualization shows the different entity type and their diverse interfinkages.

This project is funded by NSF award 2033569.
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Anatomical structures, cell types and biomarkers
of the Human Reference Atlas

Katy Borner ©®'%<, Sarah A. Teichmann®?2, Ellen M. Quardokus', James C. Gee?, Kristen Browne?,
David Osumi-Sutherland®, Bruce W. Herr lI©", Andreas Bueckle®’, Hrishikesh Paul', Muzlifah Haniffa®¢,
Laura Jardine$, Amy Bernard ©®7, Song-Lin Ding?, Jeremy A. Miller®, Shin Lin®, Marc K. Halushka',
Avinash Boppana", Teri A. Longacre™, John Hickey™, Yiing Lin®, M. Todd Valerius ©'#, Yongqun He ©®™,
Gloria Pryhuber™, Xin Sun', Marda Jorgensen'®, Andrea J. Radtke ®, Clive Wasserfall®, Fiona Ginty?°,
Jonhan Ho?, Joel Sunshine?, Rebecca T. Beuschel™, Maigan Brusko®, Sujin Lee??, Rajeev Malhotra®%,
Sanjay Jain?*% and Griffin Weber?

The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical
practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and inter-
linked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink
major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical
utility of the HRA.

bulk and at the single-cell level, researchers can now through Advancing Innovative Neurotechnologies Initiative—Cell

detect genomic features and genome expression with  Census Network Initiative’, the Chan Zuckerberg Initiative Seed

great precision’. Profiling single cells within tissues and organs Networks for HCA**¢, HCA awards by the EU’s Horizon 2020 pro-
enables researchers to map the distribution of cells and their devel-  gram, the Genotype-Tissue Expression project’, the GenitoUrinary
opmental trajectories across organs and gives indications as to their ~ Developmental Molecular Anatomy Project’, Helmsley Charitable
functions. In 2021, there are several ongoing, ambitious efforts to  Trust: Gut Cell Atlas*5?, the Human Tumor Atlas Network'®, the
map all of the cells in the human body and to create a digital refer- Human Biomolecular Atlas Program (HuBMAP)", the Kidney
ence atlas of the human body. The final atlas will encompass the  Precision Medicine Project (KPMP)'>", LungMAP", HCA grants
three-dimensional (3D) organization of whole organs and thou- from the United Kingdom Research and Innovation Medical
sands of anatomical structures, the interdependencies between tril-  Research Council (https://mrc.ukri.org), (Re)building the Kidney",
lions of cells, and the biomarkers that characterize and distinguish ~ Stimulating Peripheral Activity to Relieve Conditions'®, The Cancer
cell types. It will make the human body computable, supporting ~ Genome Atlas'""* and Wellcome funding for HCA pilot projects™*¢.
spatial and semantic queries run over 3D structures linked to their In total, more than 2,000 experts from around the globe are
scientific terminology and existing ontologies. It will establish a ~ working together to construct an open-source and free-to-use
benchmark reference that helps us to understand how the healthy  digital HRA using a wide variety of single or multimodal spatially
human body works and what changes during ageing or disease. resolved and bulk tissue assays. Imaging methods for anatomical
A network of 16 consortia is contributing to the construction  structure segmentation include computed tomography, magnetic
of the HRA based on studies of 30 organs (Fig. 1a) with fund- resonance imaging or optical coherence tomography (OCT)™.

https://www.nature.com/articles/s41556-021-00788-6

W ith developments in massively parallel sequencing in  The 16 consortia include the Allen Brain Atlas’, the Brain Research
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Fig. 1] Components and construction of the HRA. a, Alphabetical listing of 16 HRA construction efferts (left) linked to the 30 human organs that they
study (right). The lungs are studied by ten consortia (orange links). This review focuses on ten organs (bold) plus vasculature. BICCN, Brain Research
through Advancing Innovative Neurotechnologies Initiative—Cell Census Network Initiative; CZI, Chan Zuckerberg Initiative; H2020, Horizon 2020; GTEx,
Genotype-Tissue Expression project; GUDMAP, GenitoUrinary Developmental Molecular Anatomy Project; HTAN, Human Tumor Atlas Network; MRC,
Medical Research Council; RBK, (Re)building the Kidney; SPARC, Stimulating Peripheral Activity to Relieve Conditions; TCGA, The Cancer Genome Atlas.
b, The 3D reference objects for major anatomical structures were jointly developed for 11 organs. €, An exemplary ASCT+B table showing anatomical
structures (AS) and cell types (CT) and some biomarkers (B) for the glomerulus in the kidneys, annotated with the names of the three entity types
(anatomical structures, cell types and biomarkers) and four relationship types (part_of, is_a, located_in and characterize). Note that the is_a relationship
exists for cell types and biomarkers.
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