

Daniel Halsey

Cyberinfrastructure for Network Science Center School of Informatics and Computing, Indiana University, USA

BBSRC: Visual Interface to Biomedical Funding Data in UK

SATURDAY

SATURDAY

OBER 17

OCTOBER 17

Illuminated Diagram: Searchable World and Science Maps

Building Macroscope Workflows

- Know your questions
- Know your data
- Know your options

- Big data algorithms
- Big iron systems

Making Medium-Sized Data Meaningful

- R
- Tableau
- Sci2
- Data-specific algorithms
- RDBMS
- Small NoSQL

SATURDAY OCTOBER 17

- Plotly
- Gephi
- D3
- Leaflet
- Raw

Identify your insights

- Find needs and desired insights
- Ask questions, know your users
- Find supporting datasets, if your original data doesn't have all the answers

THEN: Find how to express this data using a macroscope toolchain

- Determine relevant data processing algorithms
- Identify data analysis algorithms
- Select data visualization algorithms or tools

Workflow Example:

Horizontal line graph of NSF projects

- 0

0

0

0 OK Cancel

SATURDAY OCTOBER 17

End date

Start date

Workflow Example:

Geomap with Gephi Network Overlay

File with geolocations and linkage info, e.g., an isi biblio-graphy file.

Use Yahoo! Geocoder to identify Latitude, Longitude for each geolocation

Extract attributes per geolocation, e.g., total times cited (TC) Extract linkages and their attributes, e.g., number of co-occurences See sample /geo/LaszloBarabasiGeo.net with co-occurrence of "Research Addresses" and full counting of TC per geolocation.

Combine geomap and network in Photoshop

SATURDAY

OCTOBER 17

SATURDAY CTOBER 17

Filling In The Gaps Building Tools for a Macroscope Workflow

- Know your data structures: Data types coming in, going out, and everything in between
- Link it all: Build the best connector/converter between data preprocessing, analysis and visualization algorithms
- Know your algorithms: Answer
 - When Qs using temporal analysis & vis algorithms
 - Where Qs using geospatial analysis & vis algorithms
 - What Qs using topical analysis & vis algorithms
 - With Whom Qs using network analysis & vis algorithms
- Use standards: Stand on the shoulders of giants

Force Directed with Annotation (prefuse beta)

DrL (VxOrd)
Specified (prefuse beta)

Fruchterman-Reingold with Annotation (prefuse beta)

SATURDAY CTOBER 17

Practicing what we preach: Sci2 *looks* monolithic...but it's not!

Implementer(s): Timothy Kelley Integrator(s): Timothy Kelley Documentation:

628Text+Files%29

 CNS's main desktop product, Sci2 Tool (http://sci2.cns.iu.edu), has a huge set of analysis algorithms, visualizations, and data type converters (180+ algorithms and counting)

http://wiki.cns.iu.edu/display/CISHELL/Extract+Co-Author+Network

- Sci2 is a specific packaging of CIShell (http://cishell.org)—a framework built on top of OSGi (http://osgi.org), the same plugin engine as Eclipse
- Each algorithm is a plugin: what looks like tight integration is the result of plugin discovery and an extensive data file format converter system
- Plugins can do almost anything, in almost any language, as long as they're wrapped correctly

