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An introduction to modeling science: Basic model types, key definitions, 
and a general framework for the comparison of process models
Katy Börner, Kevin W. Boyack, Staša Milojević, Steven Morris. (2011) In Scharnhorst, Andrea, Börner, van den 
Besselaar (Eds) Models of Science Dynamics. Springer Verlag.

Modeling Process
1. Formulation of a scientific hypothesis about the identification of a specific structure or 

dynamics. Often, this hypothesis is based on analysis of patterns found in empirical data. 
2. Algorithm design and implementation using either tools (e.g., NetLogo, RePast) or 

custom codes that attempt to mathematically describe the structure or dynamics of 
interest. 

3. Simulated data are calculated by running the algorithm and validated by comparison with 
empirical data. 

4. Resulting insights frequently inspire new scientific hypotheses, and the model is iteratively 
refined or new models are developed.

12
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Sample Model #1
Modelling Co-Evolving Author-Paper Networks 

(MESO) 
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Modeling the Co-Evolving Author-Paper Networks 
Börner, Katy, Maru, Jeegar & Goldstone, Robert. (2004). The Simultaneous Evolution of 
Author and Paper Networks. PNAS. Vol. 101(Suppl. 1), 5266-5273.

The TARL Model (Topics, Aging, and Recursive Linking) incorporates
 A partitioning of authors and papers into topics, 
 Aging, i.e., a bias for authors to cite recent papers, and 
 A tendency for authors to cite papers cited by papers that they have read resulting in a rich get richer 

effect. 
The model attempts to capture the roles of authors and papers in the production, storage, and 
dissemination of knowledge. 

Model Assumptions
 Co-author and paper-citation networks co-evolve.
 Authors come and go. 
 Papers are forever. 
 Only authors that are 'alive' are able to co-author.
 All existing (but no future) papers can be cited.
 Information diffusion occurs directly via co-authorships and indirectly via the consumption of other 

authors’ papers. 

 Preferential attachment is modeled as an emergent property of the elementary, local networking activity of 
authors reading and citing papers, but also the references listed in papers. 

14
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Modeling the Co-Evolving Author-Paper Networks 
Börner, Katy, Maru, Jeegar & Goldstone, Robert. (2004). The Simultaneous Evolution of 
Author and Paper Networks. PNAS. Vol. 101(Suppl. 1), 5266-5273.

15

Aging function

Model Validation
The properties of  the networks generated by this 
model are validated against a 20-year data set (1982-
2001) of  documents of  type article published in the 
Proceedings of  the National Academy of  Science 
(PNAS) – about 106,000 unique authors, 472,000 co-
author links, 45,120 papers cited within the set, and 
114,000 citation references within the set.
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20-Year PNAS Dataset (1982-2001)
Coverage in terms of time span, total number of papers, and complete author’s work

time1982        2001

# papers

Papers cited by 
papers in X

Papers in X

Papers citing 
papers in X

Other
Publications

PNAS

17

(0000) (1000) Topics

(0100) Co-Authors (0010) References

The TARL Model: The Effect of Parameters

Co-authoring leads to fewer papers.

Topics lead to disconnected networks.

18
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Aging function

Counts for Papers and Authors

Counts for Citations

19

Aging function

Co-Author and Paper-Citation
Network Properties

Power Law Distributions
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Aging function

Topics: The number of topics 
is linearly correlated with the 
clustering coefficient of the 
resulting network: C= 
0.000073 * #topics. Increasing 
the number of topics increases 
the power law exponent as 
authors are now restricted to 
cite papers in their own topics 
area. 

Aging: With increasing b, and 
hence increasing the number of 
older papers cited as 
references, the clustering 
coefficient decreases. Papers 
are not only clustered by topic, 
but also in time, and as a 
community becomes 
increasingly nearsighted in 
terms of their citation 
practices, the degree of 
temporal clustering increases.

References/Recursive 
Linking: The length of the 
chain of paper citation links 
that is followed to select 
references for a new paper also 
influences the clustering 
coefficient. Temporal 
clustering is ameliorated by the 
practice of citing (and 
hopefully reading!) the papers 
that were the earlier 
inspirations for read papers.

21

Sample Model #2
Collective allocation of science funding as an 

alternative to peer review 
(MESO)
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Science 7 February 2014: Vol. 343 no. 6171 p. 598 
DOI: 10.1126/science.343.6171.598 
http://www.sciencemag.org/content/343/6171/598.full?sid=4f40a7f0-6ba2-4ad8-a181-7ab394fe2178

From funding agencies to scientific agency: Collective allocation of science 
funding as an alternative to peer review
Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Börner. 2014. EMBO Reports 15 (1): 1-121. 

Existing (left) and proposed (right) funding systems. Reviewers in blue; investigators in red. 

In the proposed system, all scientists are both investigators and reviewers: every scientist receives a fixed 
amount of funding from the government and discretionary distributions from other scientists, but each is 
required in turn to redistribute some fraction of the total they received to other investigators.

24
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From funding agencies to scientific agency: Collective allocation of science 
funding as an alternative to peer review
Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Börner. 2014. EMBO Reports 15 (1): 1-121. 

Assume

Total funding budget in year y is ty
Number of qualified scientists is n

Each year,

the funding agency deposits a fixed amount into each account, 
equal to the total funding budget divided by the total number of 
scientists: ty/n.

Each scientist must distribute a fixed fraction of  received funding 
to other scientists (no self-funding, COIs respected).

Result

Scientists collectively assess each others’ merit based on different 
criteria; they “fund-rank” scientists; highly ranked scientists have to 
distribute more money.

25

From funding agencies to scientific agency: Collective allocation of science 
funding as an alternative to peer review
Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Börner. 2014. EMBO Reports 15 (1): 1-121. 

Example:

Total funding budget in year is 2012 NSF budget

Given the number of NSF funded scientists, each receives a  
$100,000 basic grant.

Fraction is set to 50%

In 2013, scientist S receives a basic grant of $100,000 plus 
$200,000 from her peers, i.e., a total of $300,000. 

In 2013, S can spend 50% of that total sum, $150,000, on her own 
research program, but must donate 50% to other scientists for 
their 2014 budget. 

Rather than submitting and reviewing project proposals, S donates 
directly to other scientists by logging into a centralized website and 
entering the names of the scientists to donate to and how much 
each should receive.

26
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From funding agencies to scientific agency: Collective allocation of science 
funding as an alternative to peer review
Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Börner. 2014. EMBO Reports 15 (1): 1-121. 

Model Run and Validation:

Model is presented in http://arxiv.org/abs/1304.1067

It uses citations as a proxy for how each scientist might distribute 
funds in the proposed system.

Using 37M articles from TR 1992 to 2010 Web of Science (WoS) 
database, we extracted 770M citations. From the same WoS data, 
we also determined 4,195,734 unique author names and we took

the 867,872 names who had authored at least one paper per year 
in any five years of the period 2000–2010.

For each pair of authors we determined the number of times one 
had cited the other in each year of our citation data (1992–2010). 

NIH and NSF funding records from IU’s Scholarly Database 
provided 347,364 grant amounts for 109,919 unique scientists for 
that time period.

Simulation run begins in year 2000, in which every scientist was 
given a fixed budget of B = $100k. In subsequent years, scientists 
distribute their funding in proportion to their citations over the 
prior 5 years. 

The model yields funding patterns similar to existing NIH and 
NSF distributions.

27

28



5/12/2015

15

From funding agencies to scientific agency: Collective allocation of science 
funding as an alternative to peer review
Bollen, Johan, David Crandall, Damion Junk, Ying Ding, and Katy Börner. 2014. EMBO Reports 15 (1): 1-121. 

Model Efficiency:

Using data from the Taulbee Survey of Salaries Computer Science 
(http://cra.org/resources/taulbee ) and the National Science 
Foundation (NSF) the following calculation is illuminating:

If four professors work four weeks full-time on a proposal 
submission, labor costs are about $30k.  With typical funding rates 
below 20%, about five submission-review cycles might be needed 
resulting in a total expected labor cost of $150k. 

The average NSF grant is $128k per year.

U.S. universities charge about 50% overhead (ca. $42k), leaving 
about $86k. 

In other words, the four professors lose $150k-$86k=$64k of paid 
research time by obtaining a grant to perform the research. 

That is, U.S. universities should forbid professors to apply for 
grants—if they can afford to forgo the indirect dollars. 

To add: Time spent by researchers to review proposals. In 2012 
alone, NSF convened more than 17,000 scientists to review 53,556 
proposals.

29

Sample Model #3
Monitoring, Modeling, and Forecasting Tools for 

Fostering an Innovative S&T Workforce
(MICRO … MACRO)

30
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Monitoring, Modeling, and Forecasting Tools for Fostering an Innovative 
S&T Workforce
With Nicolas Payette. Work in progress.

This project aims to develop 
monitoring, modeling, and 
forecasting approaches and  
tools for fostering an innovative 
science and technology 
workforce. 

Large-scale  datasets of scholarly 
activity including  funding, 
publications, patents, and job  
openings among others are 
analyzed and modeled. 

NetLogo is used to study the 
impact of transportation 
pathways (here airport traffic 
data) on co-authorships formed. 
We also model the diffusion of 
ideas via transportation and 
collaboration networks.

31

Broadcasting STI Model Results
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All papers, maps, tools, talks, press are linked from http://cns.iu.edu
These slides will soon be at http://cns.iu.edu/docs/presentations

CNS Facebook: http://www.facebook.com/cnscenter
Mapping Science Exhibit Facebook: http://www.facebook.com/mappingscience
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