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Abstract

In all social and economic interactions, individuals or coalitions choose not only with
whom to interact but how to interact, and over time both the structure (the with
whom) and the strategy (the how) of interactions change. Our objectives here are to
model the structure and strategy of interactions prevailing at any point in time as a
directed network and to address the following open question in the theory of social
and economic network formation: given the rules of network and coalition formation,
the preferences of individuals over networks, the strategic behavior of coalitions in
forming networks, and the trembles of nature, what network and coalitional dynam-
ics are likely to emergence and persist. Our main contributions are (i) to formulate
the problem of network and coalition formation as a dynamic, stochastic game, (ii)
to show that this game possesses a stationary correlated equilibrium (in network
and coalition formation strategies), (iii) to show that, together with the trembles
of nature, this stationary correlated equilibrium determines an equilibrium Markov
process of network and coalition formation which respects the rules of network and
coalition formation and the preferences of individuals, and (iv) to show that, although
uncountably many networks may form, this endogenous process of network and coali-
tion formation possesses a nonempty finite set of ergodic measures and generates a
finite, disjoint collection of nonempty subsets of networks and coalitions, each consti-
tuting a basin of attraction. Moreover, we extend to the setting of endogenous Markov
dynamics the notions of pairwise stability (Jackson-Wolinsky, 1996), strong stability
(Jackson-van den Nouweland, 2005), and Nash stability (Bala-Goyal, 2000), and we
show that in order for any network-coalition pair to be stable (pairwise, strong, or
Nash) it is necessary and sufficient that the pair reside in one of finitely many basins
of attraction - and hence reside in the support of an ergodic measure. The results
we obtain here for endogenous network dynamics and stochastic basins of attraction
are the dynamic analogs of our earlier results on endogenous network formation and
strategic basins of attraction in static, abstract games of network formation (Page
and Wooders, 2008), and build on the seminal contributions of Jackson and Watts
(2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).



1 Introduction

1.1 Overview

In all social and economic interactions, individuals or coalitions choose not only with
whom to interact but how to interact, and over time both the structure (the with
whom) and the strategy (the how) of interactions change. Our objectives here are to
model the structure and strategy of interactions prevailing at any point in time as a
directed network and to address the following open question in the theory of social and
economic network formation: given the rules of network formation, the preferences
of individuals over networks, the strategic behavior of coalitions in forming networks,
and the trembles of nature, what network and coalitional dynamics are likely to
emergence and persist. Thus, we propose to study the emergence of endogenous
network and coalitional dynamics from strategic behavior and the randomness in
nature.

Our main contributions are (i) to formulate the problem of network formation as
a dynamic, stochastic game, (ii) to show that this game possesses an equilibrium in
stationary correlated network and coalition formation strategies, (iii) to show that,
together with the trembles of nature, these equilibrium strategies (stationary corre-
lated equilibrium network and coalition formation strategies) determine an equilib-
rium Markov process of network and coalition formation which respects the rules of
network formation and the preferences of individuals, and (iv) to show that, although
uncountably many networks may form, the equilibrium Markov process of network
and coalition formation possesses only a finite number of ergodic probability mea-
sures and generates only finite number nonempty subsets of networks and coalitions,
each constituting a stochastic basin of attraction.

In our prior work on static abstract games of network formation (Page and Wood-
ers, 2007, denoted PW07), we have shown that, given the rules of network formation
and the preferences of individuals, these games possess strategic basins of attraction
and these contain all networks that are likely to emerge and persist as the game un-
folds. Moreover, we have shown that when any one of these strategic basins contains
only one network, then the game possesses a network (i.e., the single network con-
tained in the singleton basin) that is stable against all coalitional network deviation
strategies - and thus the game has a nonempty path dominance core. Finally, we have
shown in PW07 that depending on how we specialize the rules of network formation
and the dominance relation over networks, any network contained in the path domi-
nance core is pairwise stable (Jackson-Wolinsky, 1996), strongly stable (Jackson-van
den Nouweland, 2005), Nash (Bala-Goyal, 200), or consistent (Chwe, 1994).

We show here that there are many parallels between the static abstract game
formulation and our prior results for static games and the results we obtain here for
our Markov dynamic game formulation. This is suggested already by the seminal
paper by Jackson and Watts (2002) on the evolution of networks. Jackson and Watts
present a basic theory (and to our knowledge the first theory) of stochastic dynamic
network formation over a finite set of linking networks governed by Markov chain
generated by myopic players (following the Jackson-Wolinsky rules of network for-
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mation) and the trembles of nature. Their model builds on the earlier, nonstochastic
model of dynamic network formation due to Watts (2001) - as far as we know, the
first models of network dynamics are Watts (2001) and Skyrms and Pemantle (2000).
By considering a sequence of perturbed irreducible and aperiodic Markov chains (i.e.,
each with a unique invariant measure) converging to the original Markov chain, they
show that any pairwise stable network is necessarily contained in the support of an
invariant measure - that is, in the support of a probability that places all its sup-
port on sets of networks likely to form in the long run. We show here that similar
conclusions can be reached for directed networks with many arc types governed by
arbitrary network formation rules.

In a general Markov game setting, with farsighted players, what precisely does
it mean for a network to be pairwise stable - or stable in any sense? For example,
if the state space of networks is large, then the endogenous Markov process of net-
work formation is likely to have many invariant measures - and in fact many ergodic
probability measures (i.e., measures that place all their probability mass on a single
absorbing set). Which absorbing set contains networks stable in the sense of pairwise
stability, or strong stability, or Nash stability? These are some of the questions we
answer here in our study of endogenous network dynamics.

We conjecture that in any reasonable dynamic, stochastic model of network forma-
tion the endogenously determined Markov process of network and coalition formation
will possess ergodic probability measures and generate basins of attraction. We show
here that in fact the endogenous Markov process possesses only finitely many ergodic
measures and basins of attraction. This endogenous finiteness property of equilib-
rium has serious implications for empirical work on networks. In particular, since
nature does not afford the empirical observer multiple observations across states but
rather only multiple observations across time, the fact that only finitely many long
run equilibrium sets are possible and more importantly, the fact that on these sets
(i.e., on these basins of attraction) state averages are equal to time averages gives
meaning and significance to time series observations which seek to infer the long run
equilibrium network. Moreover, to the extent that networks can truly represent vari-
ous social and economic interactions, our understanding of how and why the network
formation process moves toward or away from any particular basin can potentially
shed new light on the persistence or transience of many social and economic con-
ditions. For example, how and why does a particular path of entrepreneurial and
scientific interactions carry an economy beyond a tipping point and onto a path of
economic growth driven by a particular industry - and why might it fail to do so?
How and why does a particular path of product line-nonlinear pricing schedule con-
figurations lead a strategically competitive industry to become more concentrated -
or fade? These are some of the applied questions which hopefully can be addressed
using a model of endogenous network dynamics

1.2 Endogenous Network Dynamics

Our approach to endogenous dynamics is motivated by the observation that the sto-
chastic process governing network and coalition formation through time is determined
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not only by nature’s randomness (or nature’s trembles) through time - as envisioned
in random graph theoretic approaches - but also by the strategic behavior of individu-
als and coalitions through time in attempting to influence the networks and coalitions
that emerge under the prevailing rules of network formation and the trembles of na-
ture. Thus, here we will develop a theory of endogenous network and coalitional
dynamics that brings together elements of random graph theory and game theory
in a dynamic stochastic game model of network and coalition formation. While dy-
namic stochastic games have been used elsewhere in economics (see, for example,
Amir (1991, 1996), Amir and Lambson (2003), and Chakrabarti (1999, 2008), Duffie,
Geanakoplos, Mas-Colell, and McLennan (1994), Mertens and Parthasarathy (1987,
1991), Nowak (2003, 2007)), their application to the analysis of the evolution of social
and economic networks is relatively new.

Our plan of analysis has two parts. In part (1) we will construct our dynamic game
model of network and coalition formation, and then show that this game has an equi-
librium in stationary correlated stationary strategies. Our model has six primitives
consisting of the following: (i) a feasible set of directed networks representing all pos-
sible configurations of social or economic interactions, (ii) a feasible set of coalitions
allowed to form under the rules of network formation for the purpose of proposing
alternative networks, (iii) a state space consisting of feasible network-coalition pairs,
(iv) a set of players and player constraint correspondences specifying for each player
and in each state the set of feasible alternative networks and coalitions that a player
can propose under the rules of network formation as a member of the current or sta-
tus quo coalition - and as a nonmember, (v) a set of player discount rates and payoff
functions defined on the graph of players’ product constraint correspondence, and (vi)
a stochastic law of motion. This stochastic law of motion represents nature and spec-
ifies the probability with which each possible new status quo network-coalition (i.e.,
new state) might emerge as a function of the status quo network-coalition pair (i.e.,
the current state) and the profile of player-proposed new status quo network-coalition
pairs (i.e., the current action profile). Using these primitives, we will construct a dis-
counted stochastic game model of network formation, and then show that this game
possesses a stationary correlated equilibrium in network-coalition proposal strategies.

Finally, in part (1) we will show that, together with the stochastic law of motion,
these stationary correlated equilibrium strategies determine an equilibrium Markov
process of network and coalition formation. More importantly, we will be able to con-
clude via classical results due to Blackwell (1965) (also, Himmelberg, Parthasarathy,
and vanVleck (1976)), Nowak and Raghavan (1992), and Duffie, Geanakoplos, Mas-
Colell, and McLennan (1994)) that these stationary correlated equilibrium strategies
are optimal against player defections to any other history-dependent network-coalition
proposal strategies - thus showing that our decision to focus on stationary correlated
strategies is well-founded.

In part (2), we will analyze the stability properties the endogenous Markov process
of network and coalition formation. In particular, using methods of stability analysis
essentially due to Nummelin (1984) and Meyn and Tweedie (1993) - and based on the
profound work of Doeblin (1937, 1940) - we will show that the equilibrium Markov
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process of network and coalition formation possesses ergodic probability measures
and generates basins of attraction. We will then study in some detail the number
and structure of these basins of attraction as well as the structure of set of invariant
probability measures. More importantly we will show that the equilibrium process
possesses only finitely many ergodic measures and basins of attraction. Finally, in
part (2), we will extend the definitions of pairwise stable, strongly stable, Nash,
and consistent networks to the dynamic Markov setting of the model and show that
these various types of stable networks can be found only in the basins of attraction
generated under the appropriate specification of the rules of network formation and
feasible coalitions.

1.3 Related Literature

To our knowledge, the first paper to study endogenous dynamics in a related model is
the paper by Konishi and Ray (2003) on dynamic coalition formation. The primitives
of their model consist of (i) a finite set of outcomes (possibly a finite set of networks),
(ii) a set of coalitional constraint correspondences specifying for each coalition and
each status quo outcome, the set of new outcomes a coalition might bring about if
allowed to do so, and (iii) a discount rate and set of player payoff functions defined
on the set of all outcomes. Konishi and Ray show that their model possesses an equi-
librium process of coalition formation, that is, a stochastic law of motion governing
movement from one outcome to another such that (a) if a move from one outcome
to another takes place with positive probability, then for some coalition this move
makes sense in that no coalition member is made worse off by the move and no further
move makes all coalition members better off, and (b) if for a given outcome there
is another outcome making all members of some coalition better off and no further
outcome makes this coalition even better off, then a move to another outcome takes
place with probability 1 (i.e., the probability of standing still at the given outcome
is zero). The notion of a player being better off is reckoned in terms of a player’s
valuation function implied by the maximization of the expected discounted stream of
payoffs with respect to the stochastic law of motion. Stated loosely, then, Konishi and
Ray show that for their model there is a law of motion which generates coalitionally
Pareto improving moves from one outcome to another (i.e., in our case it would be
from one network to another).

Our model differs from the model of Konishi and Ray in several respects. First, in
our model movements from one network (outcome) to another are largely determined
by the strategic behavior of individuals within feasible coalitions. In Konishi and
Ray, coalitions are passive and strategic behavior plays no part in determining the
movement from one outcome to another. They simply show that there model is
consistent with there being a law of motion which moves the outcome along in a
coalitionally Pareto improving way. In this sense - i.e., in the sense that movement is
nonstrategic - their model is more closely related to random graph theoretic models
of network dynamics. In our model, equilibrium strategic behavior, together with
natures trembles, are central to determining equilibrium network dynamics.

Second, whereas Konishi and Ray, for technical reasons, restrict attention to a
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finite set of outcomes (in our model, a finite set of networks), we allow for uncount-
ably many networks - this to allow for consideration of networks with a large number
of nodes or networks with uncountably many arc types. This generalization is more
than a technical nicety. In order to capture the myriad and potentially complex
nature of interactions between players (say for example in a stock market or in a
contracting game with multiple principals and multiple agents) we must allow there
to be uncountably many possible types of interactions. In our model the set of po-
tential interactions are represented by a set of arc types with each arc type (or arc
label) representing a particular type of interaction (or connection) between nodes in
a directed network. Thus, because we allow for uncountably many arc types in de-
scribing the possibly finite number of interactions between nodes, in our model there
are uncountably many possible networks (or outcomes in the language of Konishi
and Ray). Moreover, in order to model large networks (i.e., networks with many
nodes), in our model we can allow there to be infinitely many nodes - although here
we focus exclusively on the finite nodes case. Third, while Konishi and Ray restrict
attention at the outset to Markov laws of motion, we will show that our strategi-
cally determined equilibrium Markov process of network and coalition formation is
robust against all possible alternative dynamics induced by history-dependent types
of strategic behavior. Thus, at least for the class of Konishi-Ray types of models, we
will show that Markov laws of motion are stable and robust with respect to other
forms of history-dependent laws of motion.1

Finally, whereas Konishi and Ray focus on the existence of an equilibrium process
of coalition formation, here we will not only establish the existence of a strategically
determined equilibrium process of network and coalition formation, but also we will
show that this process possesses a nonempty set of ergodic measures and generates
basins of attraction.

Dutta, Ghosal, and Ray (2005) extend the Konishi-Ray type model to consider a
particular form of strategic behavior (i.e., strategic behavior governed by a particular
set of network formation rules) in a dynamic game of network formation over a finite
set of undirected linking networks (rather than directed networks). They show that
their model has a Nash equilibrium and identify conditions under which efficiency can
be sustained in equilibrium - thus, continuing in a dynamic setting the seminal work
of Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997) on equilibrium
and efficiency. Here our focus is on equilibrium and stability rather than equilibrium
and efficiency and our analysis is carried out in a dynamic, stochastic game model
of network and coalition formation, admitting all forms of network formation rules,
over an uncountable set of directed networks. While Dutta, Ghosal, and Ray restrict
attention to Markov strategies and show that there is an equilibrium in this class
of network formation strategies, here, we show that there is an equilibrium in the
class of all stationary correlated network and coalition proposal strategies and that
this type of equilibrium is optimal relative to the class of all history-dependent net-

1By a Markov law of motion we mean a stochastic law of motion where probabilistic movements
from one outcome or network to another depend only on the current outcome rather than on some
history of outcomes.
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work formation strategies. Moreover, as mentioned above, we show that in general,
the resulting equilibrium Markov network and coalitional dynamics possess ergodic
measures and generate network and coalitional basin of attraction.

We view the starting point of our research to be the pioneering work of Jackson
and Watts (2002) already discussed briefly above. Our model of endogenous net-
work and coalitional dynamics extends their work on stochastic network dynamics
in several respects. First, in our model players behave farsightedly in attempting
to influence the path of network and coalition formation - farsighted in the sense of
dynamic programing (e.g.,Dutta, Ghosal, and Ray (2005))2. Moreover, in our model
the game is played over a (possibly) uncountable collection of directed networks un-
der general rules of network formation which include not only the Jackson-Wolinsky
rules, but also other more complex rules. In our model the law of motion is such
that the trembles of nature are Markovian rather than i.i.d. as in Jackson and Watt,
and are functions of the current state and the current profile of network and coalition
proposals by players. Extending the notion of pairwise stability to a dynamic setting,
one of the benchmarks for our research is to show that in a Markov model of network
and coalition formation, if a network is dynamically pairwise stable, then it must be
contained in one of finitely many basins of attraction, and therefore, contained in the
support of an ergodic probability measure.

2See Chwe (1994), Page, Wooders, and Kamat (2005), and Page and Wooders (2007) for notions
of farsighted behavior in static, abstract games.
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2 Primitives

2.1 The Space of Directed Networks

We begin by giving the formal definition of a directed network. Let N be a finite
set of nodes with typical element denoted by i and let A be a compact metric space
of arcs with typical element denoted by a. Denote by dA the metric on A and by
dN the discrete metric on N .3 Arcs represent potential connections between nodes,
and depending on the application, nodes can represent economic agents or economic
objects such as markets or firms.

Definition 1 (Directed Networks)

Given node set N and arc set A, a directed network, G, is a nonempty, closed
subset of A × (N × N). The collection of all directed networks is denoted by
Pf (A× (N ×N)).

A directed network G ∈ Pf (A× (N ×N)) thus consists of a set of ordered pairs
of the form (a, (i, i

�
)) where a is an arc type or an arc label and (i, i�) is an ordered

pair of nodes. We shall refer to any pair (a, (i, i
�
)) ∈ G as a connection in network

G. Thus, a network G is a closed set of connections specifying how the nodes in N
are connected by the arcs in A. In a directed network order matters. In particular,
(a, (i, i

�
)) ∈ G means that nodes i and i� are connected by a type a arc from node i

to node i
�
.

Note that under our definition of a directed network, loops are allowed - that is,
we allow an arc to go from a given node back to that given node.4 Finally, note
that under our definition an arc can be used multiple times in a given network and
multiple arcs can go from one node to another. However, our definition does not
allow an arc a to go from a node i to a node i� multiple times.

The following notation is useful in describing networks. Given directed network
G ∈ Pf (A× (N ×N)), let

G(a) :=
q
(i, i

�
) ∈ N ×N : (a, (i, i

�
)) ∈ G

r
,

G+(i) :=
q
a ∈ A : (a, (i, i�)) ∈ G for some i� ∈ N

r
,

and

G−(i�) :=
q
a ∈ A : (a, (i, i�)) ∈ G for some i ∈ N

r
.

Thus, in network G,

3The discrete metric dN is given by

dN (i, i
�) =

�
1 if i �= i�
0 otherwise.

4By allowing loops we are able to represent a network having no connections between distinct
nodes as a network consisting entirely of loops at each node.
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G(a) is the set of node pairs connected by arc a,
G+(i) is the set of arcs leaving node i, and
G−(i�) is the set of arcs entering node i�.

If for some arc a ∈ A, G(a) is empty, then arc a is not used in network G. Also,
if for some node i ∈ N , G+(i) ∪G−(i) is empty, then node i is said to be isolated.

BecauseA×(N×N) is a compact metric space, the set of networks Pf (A×(N×N))
equipped with the Hausdorff metric h is a compact metric space (see Aliprantis
and Border (1999), sections 3.14-3.16). Formally, the Hausdorff metric is defined as
follows: First, let the distance between connection (a, (i0, i1)) ∈ A × (N × N) and
network G ∈ Pf (A× (N ×N)) be given by

d((a, (i0, i1)), G) := inf
(a�,(i�0,i

�
1))∈G

d
�
(a, (i0, i1)), (a

�, (i�0, i
�
1))
�
,

where
d
�
(a, (i0, i1)), (a

�, (i�0, i
�
1))
�
:= dA(a, a

�) + dN (i0, i�0) + dN(i1, i
�
1)

is the metric on A× (N ×N). Given this distance measure between connections and
networks, the Hausdorff metric h is then defined as

h(G,G�)
:= max

q
sup(a,(i0,i1))∈G d((a, (i0, i1)), G

�), sup(a�,(i�0,i�1))∈G� d((a
�, (i�0, i�1)), G)

r
,

for G and G� in Pf (A× (N ×N)).5
Given the nature of the discrete metric on the set of nodes, it is easy to see that

if the Hausdorff distance between networks G and G� is less than ε ∈ (0, 1), that is,
if networks G and G� are within ε distance for ε < 1, then the same set of nodes
are involved in connections in both networks and the networks differ only in the way
these nodes are connected (i.e., in the types of arcs used in making the connections).
Thus if h(G,G�) < ε < 1, then

(a, (i, i�)) ∈ G if and only if (a�, (i, i�)) ∈ G�

for arcs a and a� with dA(a, a�) < ε.
Convergence in the space of directed networks (Pf (A×(N×N)), h) can be charac-

terized via the notions of limes inferior and limes superior. Let {Gn}n be a sequence of
directed networks. The limes inferior of this sequence, denoted by Li(Gn), is defined
as follows: connection (a, (i, i�)) ∈ Li(Gn) if and only if there is a sequence of connec-
tions {(an, (in, i�n))}n converging to (a, (i, i�)) (i.e., (an, (in, i�n)) d→ (a, (i, i�))) where
for each n connection (an, (in, i�n)) is contained in network Gn. The limes superior,
denoted by Ls(Gn), is defined as follows: connection (a, (i, i�)) ∈ Ls(Gn) if and only
if there is a subsequence of connections {(ank , (ink , i�nk))}k converging to (a, (i, i�))

5 It is important to note that because A × (N ×N) is compact, all metrics compatible with the
product topology on A× (N×N), generate the same Hausdorff metric topology on Pf (A× (N×N))
(see Theorem 3.77 in Aliprantis and Border (1999)).
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(i.e., (ank , (ink , i�nk)) d→ (a, (i, i�))) where for each k connection (ank , (ink , i�nk)) is con-
tained in networkGnk . A directed networkG ∈ Pf (A×(N×N)) is said to be the limit
of networks {Gn}n if Ls(Gn) = G = Li(Gn). Moreover, Ls(Gn) = G = Li(Gn) if
and only if h(Gn,G)→ 0 (i.e., the sequence of networks {Gn}n converges to network
G ∈ Pf (A× (N ×N)) under the Hausdorff metric h).6

In formulating our game of network and coalition formation, it will often be useful
to restrict attention to a particular feasible subset of networks.

Definition 2 (Feasible Networks)

Given node set N and arc set A, a feasible set of networks is a nonempty, h-closed
subset G of the collection of all directed networks Pf (A× (N ×N)).

Example (A feasible set of networks): Suppose that the feasible set of networks
G is given by

G =
�
G ∈ Pf (A× (N ×N)) : ��G+(i)�� ≤ c(i)� ,

where c(·) is a nonnegative integer-valued function and |G+(i)| denotes the cardinality
of the set of arcs G+(i) emanating from node i (i.e., the out degree of node i). Thus,
in each network G contained in G there is at most c(i) arcs emanating from node i.
It is easy to show that G is an h-closed subset of Pf (A× (N ×N)).

2.2 Players and Coalitions

In our game theoretic model of network and coalition formation we will make a
distinction between the set of players (or decision makers) and the set of nodes.
In particular, we will not assume that the set of players and the set of nodes are
necessarily one and the same. For example, some nodes may be club locations while
other nodes may be players who choose clubs.

Because changing one network to another network very often involves groups of
players acting in concert, coalitions will play a central role in our model. Let D
denote the set of players (a set not necessarily equal to N the set of nodes) with
typical element denoted by d and let P (D) denote the collection of all coalitions (i.e.,
nonempty subsets of D) with typical element denoted by S. We will assume that the
set of players D has cardinality m (i.e., |D| = m). Depending on the rules of network
formation, it will often be useful to restrict attention to a particular feasible subset
of coalitions.

6Both Li(Gn) and Ls(Gn) are networks, that is, both Li(Gn) and Ls(Gn) are contained in
Pf (A× (N ×N)). Moreover, in general,

Li(Gn) ⊆ Ls(Gn).
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Definition 3 (Feasible Coalitions)

Given player set D, a feasible set of coalitions is a nonempty subset F of the
collection of all coalitions P (D).

Example (A set of coalitions): Suppose that the feasible set of coalitions is given

F2 = {S ∈ P (D) : |S| ≤ 2} .

Thus, all feasible coalitions consist of at most two players. The set F2 is, for example,
the feasible set for the Jackson-Wolinsky rules

2.3 States, Actions, and Payoffs

We shall take as the state space the space Ω := (G×F) of all feasible network-coalition
pairs. Each state in (G×F) has the following interpretation: if (G,S) is the current
state, then G is the current status quo network of social interactions and it is coalition
S’s turn to propose a new state - that is, to propose a new status quo network and a
new coalition to propose the next network. Once we have gotten out of the way some
technical issues, we will return to a discussion of how we model movement from one
state to another in our game.

Equipping F with the discrete metric dF (i.e., dF(S�, S) = 0 if S� = S, dF(S�, S) =
1 if S� 9= S), the state space (G×F) is a compact metric space under the metric dΩ
given by

dΩ((G
�, S�), (G,S)) := h(G�,G) + dF(S�, S).

Letting B(Ω) := B(G×F) be the Borel σ-field generated by the metric dΩ, we equip
our state space (G×F , B(G×F)) with a probability measure

μ = ν × γ

where the probability measure γ on coalitions is such that γ(S) > 0 for all S ∈ F and
where the probability measure ν on networks is such that the, at most, countable set
of networks constituting the set of all atoms of the dominating probability measure
ν is given by

Aν = {Gα1, Gα2, . . .} = {Gαk}∞k=1 ⊂ G. (1)

For all Gαk ∈ Aν , ν({Gαk}) > 0 and for all networks G ∈ G\Aν , ν({G}) = 0
(Parthasarathy (1967)). Thus, we have as our state space, the probability space

(Ω, B(Ω),μ) = (G×F , B(G×F), ν × γ), (2)

a compact metric space with metric dΩ = h + dF . Because G is a compact metric
space, B(G × F) =B(G)× B(F) and B(F) is the set of all subsets of F (including
the empty set).

In our game each player’s action takes the form of a recommendation or proposal.
In particular, given current state (G,S) ∈ Ω, each player d ∈ D has available a
nonempty, closed set of actions Φd(G,S) ⊆ G×F - that is, a set of proposals - such
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that player d, if given the power, could implement any proposal in Φd(G,S). We will
assume that

Φd(G,S) = Γd(G,S)× Λd(G,S),
where for each state (G,S), Γd(G,S) is a subset of G and Λd(G,S) is a subset of F .

Thus, the collection of constraint mappings

{Φd(·) : d ∈ D}
specifies, for any current state (G,S), the set of network-coalition proposals available
to each player. These mappings specify the rules of network formation by specifying
for each player d, in each state of the game (G,S), the possible moves that player d
could make if given the power to do so. With this in mind, we will assume that

A-1 (continuity of the constraint mappings)

for each player d ∈ D, the correspondence Φd(·) is such that

(i) Φd(·) has a closed graph,
GrΦd(·) :=

��
(G,S) , (G�, S�)

� ∈ (G×F)× (G×F) : (G�, S�) ∈ Φd(G,S)� ,
(3)

(ii) for each state (G,S) ∈ (G×F),
(G,S) ∈ Φd(G,S) for all d ∈ D,

and
Γd(G,S) = {G} for all d /∈ S.

⎫⎬⎭ (4)

Thus, in each state (G,S) each player d has the option of proposing that the status
quo network-coalition pair be maintained and if the player is not part of the coalition
whose turn it is to move, then the status quo is the only network proposal available
to that player. Notice however, that even if a player is not part of the coalition whose
turn it is to move, then that player can propose that another coalition, other than
the status quo coalition S, be chosen to propose the next network.

Assumption A-1(i) implies that the correspondence

(G,S)→ Φ(G,S) := Πd∈DΦd(G,S), (5)

has a closed graph.
In order for players to decide which states to propose, we must specify the payoff

functions. We shall assume that

A-2 (measurability and continuity of payoffs)

each player d ∈ D has a payoff function

rd(·, ·) : (G×F)×(G×F)m → [−M,M ] (6)

such that

11



(i) for each state (G,S) ∈ (G×F), rS((G,S), ·) is continuous on (G×F)m, and
(ii) for each m-tuple of proposals

(GD, SD) = (Gd, Sd)d∈D ∈ (G×F)m,
rS(·, (GD, SD)) is B(G×F)-measurable.

Thus, if the current state is (G,S) (i.e., if the status quo network is G and it is
coalition S’s turn to move) and if players propose m-tuple of networks-coalition pairs

(GD, SD) ∈ Φ(G,S),
player d

�
s payoff is given by

rd((G,S), (GD, SD)) := rd((G,S), (Gd, Sd, G−d, S−d)).

2.4 The Law of Motion

Given the profile of player proposals (GD, SD) and given the current state, (G,S) ∈
(G×F), nature then chooses the next state (i.e., the next network-coalition pair)
according to probabilistic transition law, q(·|(G,S), (GD, SD)) defined on the state
space (G×F , B(G×F)). We will assume the following concerning the law of motion:

A-3 (measurability, continuity, and domination of the law of motion)

(i) for all E ∈ B(G×F), the function
((G,S), (GD, SD))→ q(E|(G,S), (GD, SD))

is measurable over the graph of Φ(·);
(ii) for all dΩ-closed F ∈ B(G×F), the function

(GD, SD)→ q(F |(G,S), (GD, SD))
is continuous on Φ(G,S) for all (G,S) ∈ (G×F); and

(iii) for all ((G,S), (GD, SD)) contained in the graph of Φ(·) the measure
q(·|(G,S), (GDSD))

is absolutely continuous with respect the probability measure μ = ν × γ de-
fined on (Ω, B(Ω)) = (G×F , B(G× F)) (i.e., q(·|(G,S), (GD, SD))� μ for all
((G,S), (GD, SD)) ∈ GrΦ(·)).

Remarks 1: In order to save writing and spare the reader, when no confusion is
possible, we will use the notation

(Ω, B(Ω)) = (G×F , B(G×F))
for our state space and the notation ω for elements (G,S) of the state space.
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It should be noted that (A.3)(ii) is stronger than the usual weak continuity as-
sumption. Under weak continuity, we would have for any sequence {(ωnD)}n in Φ(ω)
with

(ωnD)→ (ωD) ∈ Φ(ω),
and any dΩ-closed F ∈ B(Ω),

lim supn q(F |ω, (ωnD)) ≤ q(F |ω, (ωD))
or equivalently,U

Ω f(ω
�)q(dω�|ω, (ωnD))→

U
Ω f(ω

�)q(dω�|ω, (ωD)),
for any bounded, continuous function f(·). Under (A.3)(ii), however, we have strength-
ened weak continuity so that for any sequence {ωnD}n in Φ(ω) with

ωnD → ωD ∈ Φ(ω),
and any h-closed F ∈ B(Ω),

limn q(F |ω,ωnD) = q(F |ω,ωD)

or equivalently (by Delbaen’s Lemma (1974)),U
Ω v(ω

�)q(dω�|ω,ωnD)→
U
Ω v(ω

�)q(dω�|ω,ωD),
for any bounded, measurable function v(·).

2.5 Plans and Stationary Correlated Strategies

2.5.1 Plans

A plan πd = (π
1
d,π

2
d, . . .) for player d ∈ D is a sequence of history dependent condi-

tional probability measures on (Ω, B(Ω)). Under plan πd in period n given the history
of states and actionm−tuples (i.e., the (n−1)-sequence of network-coalition pairs and
m-tuples of network-coalition proposals) Hn−1 :=

�
ω1,ω1D,ω

2,ω2D, . . . ,ω
n−1,ωn−1D

�
,

and given the current (period n) state ωn = (Gn, Sn), player d chooses a network-
coalition proposal according to the conditional probability measure

πnd(·|Hn−1,ωn) ∈ P (Φd(ωn)) . (7)

Here, P (Φd(ωn)) is the set of all probability measures with support contained in
Φd(ω

n).7 Let Hn−1 denote set of all (n− 1)-histories and let
Πnd := ΠΦd(Hn−1 ×Ω,P(Ω))

denote the set of all measurable functions, (Hn−1,ωn) → πnd(·|Hn−1,ωn) ∈ P(Ω)
such that πnd(·|Hn−1,ωn) ∈ P (Φd(ωn)) for all ωn ∈ Ω. Formally, the set of plans for
player d is given by

Π∞d :=
∞\
n=1

Πnd .

7For any set E⊆ G×F we shall denote by P (E) the set of all probability measures with support
contained in E.
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AMarkov plan ψd = (ψ
1
d,ψ

2
d, . . .) for player d ∈ D is a sequence of state-dependent

conditional probability measures on (Ω, B(Ω)). Under Markov plan ψd in period
n given the current (period n) status quo network-coalition pair (or state) ωn =
(Gn, Sn), player d chooses a network proposal according to the conditional probability
measure

ψnd(·|ωn) ∈ P (Φd(ωn)) . (8)

Let
Σnd := ΣΦd(Ω,P(Ω)) := ΣΦd

denote the set of all measurable functions, ω → ψnd(·|ω) ∈ P(Ω) such that ψnd(·|ωn) ∈
P (Φd(ωn)) for all ωn ∈ Ω. The set of Markov plans for player d is given by

Σ∞d :=
∞\
n=1

Σnd .

A stationary Markov plan (σd,σd, . . .) for player d ∈ D - or as we shall call
it here - a stationary strategy for player d ∈ D - is a constant sequence of state-
dependent conditional probability measures on (Ω, B(Ω)). Under stationary strategy
(σS ,σS, . . .) given the current (period n) status quo network-coalition pair (or state)
ωn = (Gn, Sn), player d, in each and every period n, chooses a network proposal
according to the conditional probability measure

σd(·|ωn) ∈ P (Φd(ωn)) . (9)

Rather than write σd(·|ω) we will sometimes write σd(ω).

2.5.2 Stationary Correlated Strategies

A stationary correlated strategy consists of m + 1 functions, λi(·) : Ω → [0, 1] such
that

Sm
i=0 λ

i(ω) = 1 and m+ 1 measurable functions

σiD(·) : Ω→ P(Ω)× · · · × P(Ω)� ~} �
|D| times

such that for each i = 0, 1, . . . ,m and each state ω ∈ Ω, σiD(ω) = (σid(·|ω))d∈D ∈
Πd∈DP (Φd(ω)). Thus for each i = 0, 1, . . . ,m, σiD(·) is an m-tuple of stationary
strategies (recall that |D| = m) where each σid(·|·) is an element of ΣΦd . Under
strategy m-tuple σiD(·) = (σid(·|·),σi−d(·|·)), if the current state is ω ∈ Ω then each
player d chooses his network-coalition proposal (i.e., chooses his action) according to
the probability measure σid(·|ω) ∈ P (Φd(ω)).

Under stationary correlated strategy (λi(·), (σid(·|·)))mi=0, if the current state is
ω ∈ Ω then the ith m-tuple σiD(·) of stationary strategies (one for each player) is
chosen with probability λi(ω) and each player d ∈ D follows stationary strategy

ω → σλd(·|ω) :=
m[
i=0

λi(ω)σid(·|ω) ∈ P (Φd(ω)) .
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Thus, for each player d, σλd(·|·) is an element of ΣΦd and under stationary strategy
σλd(·|·) :=

Sm
i=0 λ

i(·)σid(·|·), if the current state is ω ∈ Ω then player d will choose his
network-coalition proposal according to probability measure

σλd(·|ω) ∈ P (Φd(ω)) .

Note that if ω = (G,S) and d /∈ S, then any measure σd(·|ω) in P (Φd(ω)) is such
that

σd({G} × F| G,S�~}�
ω

) = 1.

Thus, in any state ω = (G,S), if player d is not a member of the active coalition S,
then his part of the correlated proposal strategy,

σλd(·|G,S) :=
m[
i=0

λi(G,S)σid(·|G,S),

places probability 1 on the set of all proposals (G�, S�) that include the status quo
network G and zero probability on all others.

2.6 Player Payoffs

Given stationary correlated strategy (λi(·), (σid(·|·)))mi=0, if the current state is ω ∈ Ω
then player d’s immediate expected payoff is

rd(ω,σ
λ
D(ω)) :=

]
Φ(ω)

rd(ω,ωD)dσ
λ
D(ωD|ω)

where σλD(ω) := σλD(·|ω) is the product measure ×dσλd(·|ω) with support contained
in Φ(ω) := Πd∈DΦd(ω).

If network-coalition proposal m-tuple ωD is chosen according to product measure
σλD(·|ω), then nature chooses the next network-coalition pair (i.e., the next state)
according to the law of motion (i.e., the probability measure) q(·|ω,ωD).

Let
rnd (σ

λ
D)(ω) := r

n
d (σ

λ
d ,σ

λ
−d)(ω)

=
U
Ω

kU
Φ(ω) rd(ω

�,ωD)dσλD(ωD|ω�)
l
qn(ω�|ω,σλD(ω))

denote the nth period expected payoff to player d under stationary correlated strategy
σλD(·) starting at network-coalition pair ω = (G,S) given law of motion q(·|·, ·). Here,
qn(·|ω,σλD(ω)) is defined recursively by

qn(E|ω,σλD(ω))

=
U
Ω q

n−1(E|ω�,σλD(ω�))q(ω�|ω,σλD(ω))

=
U
Ω q

n−1(ω�|ω,σλD(ω))q(E|ω�,σλD(ω�)).
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The discounted expected payoff to player d over an infinite time horizon under sta-
tionary correlated strategy σλD(·) ∈

T
d∈D ΣΦd starting at state ω is then given by

Ed(σ
λ
D)(ω) :=

∞[
n=1

βn−1d rnd (σ
λ
D)(ω).

In general, the discounted expected payoff to player d over an infinite time horizon
under plan πD = (πd)d∈D ∈ Π∞ :=

T
d∈D Π

∞
d starting in state ω is then given by

Ed(πD)(ω) :=
∞[
n=1

βn−1d rnd (πD)(ω).

3 Dynamic Network and Coalition Formation Games and
Nash Equilibrium

A dynamic network and coalition formation game is given by

Γ := (Ω, Ed(·)(·),Π∞d )d∈D .

A dynamic network and coalition formation game starting at state ω ∈ Ω is given by

Γω := (Ω, Ed(·)(ω),Π∞d )d∈D .

Definition 4 (Nash Equilibrium)

A stationary correlated strategy (λ∗i(·), (σ∗id (·|·))d∈D)mi=0 with corresponding m-tuple
of stationary strategies σ∗λD (·) = (σ∗λd (·|·))d∈D is a Nash equilibrium of the
dynamic network and coalition formation game Γ if for all starting network-
coalition pairs ω = (G,S) ∈ G×F and all players d ∈ D,

Ed(σ
∗λ
d ,σ

∗λ
−d)(ω) ≥ Ed(πd,σ∗λ−d)(ω) for all πd ∈ Π∞d .

Thus, a stationary correlated strategy (λ∗i(·), (σ∗id (·|·))d∈D)mi=0 with corresponding
m-tuple of stationary strategies σ∗λD (·) is a Nash equilibrium of dynamic network and
coalition formation game Γ if it is a Nash equilibrium for the game Γω for all starting
states.

Theorem 1 (The Existence of Nash Equilibrium in Stationary Correlated Network
and Coalition Formation Strategies)

Under assumptions [A-1]-[A-3] the dynamic network and coalition formation game

Γ := (Ω, Ed(·)(·),Π∞d )d∈D .

has a Nash equilibrium in stationary correlated strategies.
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Our approach to proving existence essentially follows the approach introduced
by Nowak and Raghavan in their seminal 1992 paper. But because we assume that
players’ discount factors βd are heterogenous, and more importantly, because our
stochastic continuity assumptions concerning the law of motion are slightly weaker
than those of Nowak and Raghavan (their assumptions imply our assumptions),
for the convenience of the reader we include a proof in the last section of the pa-
per. The basic objective of the proof is to show that there exists a stationary
correlated strategy (λ∗i(·), (σ∗id (·|·))d∈D)mi=0 with corresponding m-tuple of station-
ary strategies (σ∗λd (·|·))d∈D and an m-tuple of B(Ω)-measurable value functions,
w∗d(·) : Ω→[−M,M ], such that for each player d ∈ D and for all states ω ∈ Ω,

w∗d(ω) = rd(ω,σ
∗λ
D (ω)) + βd

]
Ω
w∗S(ω

�)q(ω�|ω,σ∗λD (ω)),

where

rd(ω,σ
∗λ
D (ω)) =

]
Φ(ω)

rS(ω,ω
�
D)dσ

∗λ(ω�D|ω),

and ]
Ω
w∗d(ω

�)q(ω�|ω,σ∗λD (ω)) =
]
Ω

]
Φ(ω)

w∗d(ω
�)dq(ω�|ω,ω�D)dσ∗λD (ω�D|ω).

4 The Equilibrium Markov Process: Definitions, Termi-
nology, and Basic Properties

4.1 The Equilibrium Process

Under stationary correlated equilibrium, σ∗λD (·) = (σ∗λd (·|·))d∈D, the emergent Markov
process of network and coalition formation,

{W ∗
n}n = {(G∗n, S∗n)}∞n=1 ,

is governed by the equilibrium Markov transition,8

p∗(E|ω) = UE dq(ω�|ω,σ∗λD (ω))
=
U
Φ(ω)

U
E dq(ω

�|ω,ω�D)dσ∗λ(ω�D|ω)

=
U
Φ(ω) q(E|ω,ω�D)dσ∗λ(ω�D|ω).

Thus,
Pr
�
W ∗
n+1|W ∗

n = ω
�
= p∗(E|ω)

and
Pr {W ∗

n ∈ E|W ∗
0 = ω} = p∗n(E|ω) = qn(E|ω,σ∗λD (ω)),

8Law of motion ω → p∗(·|ω) is a Markov transition if for each ω, p∗(·|ω) is a probability measure
and for each E ∈ B(Ω),

p∗(E|·) : Ω→[0, 1]
is measurable. Here, ω = (G,S) is a realization of the process W ∗

n = (G
∗
n, S

∗
n) for some n.
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where the n-step transition p∗n(·|·) is defined recursively as follows: for all ω ∈ Ω and
E ∈ B(Ω),

p∗n(E|ω) =
]
Ω
p∗(E|ω�)p∗n−1(dω�|ω) =

]
Ω
p∗n−1(E|ω�)p∗(dω�|ω) (10)

for n = 1, 2, . . ., and p∗0(·|ω) = δω(·) is the Dirac measure at ω.

4.2 Absorbing Sets and Invariant and Ergodic Probability Measures

A probability measure λ(·) on the state space of feasible network-coalition pairs
(Ω, B(Ω)) is invariant for Markov transition p∗(·|·) (i.e., is p∗-invariant) if

λ(E) =

]
Ω
p∗(E|ω)dλ(ω) for any E ∈ B(Ω). (11)

Thus, if probability measure λ(·) is p∗-invariant, then for any set of network-coalition
pairs E∈B(Ω), if the current status quo network-coalition pair ωn = (Gn, Sn) is
chosen according to probability measure λ(·) - so that the probability that ωn lies
in E is just λ(E) - then the probability that next period’s network-coalition pair
ωn+1 = (Gn+1, Sn+1) lies in E is also λ(E) =

U
Ω p

∗(E|ω)dλ(ω). Denote by I∗ the
collection of all p∗-invariant measure.

Let L∗ ⊆ B(Ω) denote the collection of all p∗-absorbing sets (i.e., E∈L∗ if and
only if p∗(E|ω) = 1 for all network-coalition pairs ω ∈ E). Note that the set of all
absorbing sets is closed under countable unions and intersections,

A p∗-absorbing set E∈L∗ is said to be indecomposable if it does not contain the
union of two disjoint absorbing sets. We say that an absorbing set A ∈ L∗ is atomic
if there does not exist another absorbing set E ∈ L∗ such that E is a proper subset
of A, i.e., such that A\E 9= ∅. We will denote by A∗ the set of all atomic absorbing
sets. Thus, the set of atomic absorbing sets is given by

A∗ = {A ∈ L∗ : there does not exist E ∈ L∗ with E ⊂ A and A\E 9= ∅ } . (12)

Note that if A ∈ A∗ and A� ∈ A∗, then A ∩ A� = ∅, and if E ∈ L∗ and A ∈ A∗,
then either E ∩ A = ∅ or E ∩ A = A. We will be most interested in the subset of
atoms each of whose states (network-coalition pairs) is expected to have an infinite
number of visitations by the network-coalition formation process starting from any
network-coalition pair. The number of visitations to atom A ∈ A∗ by process {W ∗

n}n
is given by

ηA =
∞[
n=1

IA(W
∗
n). (13)

The expected number of visitations starting from network-coalition pair ω = (G,S)
is given by

Eω[ηA] =
∞[
n=1

p∗n(A|ω). (14)
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We say that the set A is recurrent if Eω[ηA] = ∞, meaning that the set has an
infinite number of visitations. Atoms each of whose members has an infinite number
of visitations will be denoted by A∞∗. We will call these atoms infinite atoms. Thus,
the set of all infinite atoms is given by

A∞∗ =
+
A ∈ A∗ : Eω[η{ω}] =

∞[
n=1

p∗n({ω} |ω) =∞ for all ω ∈ A
,
. (15)

A p∗-invariant measure λ(·) is said to be p∗-ergodic if λ(E) = 0 or λ(E) = 1 for
all E∈L∗. Denote by E∗ the collection of all p∗-ergodic measures.

Because the p∗-ergodic probability measures are the extreme points of the (possi-
bly empty) convex set I∗ of p∗-invariant measures (see Theorem 19.25 in Aliprantis
and Border (1999)), each measure λ(·) in I∗ can be written as a convex combination
of the measures in E∗.

4.3 Hitting Probabilities, Irreducibility, and Maximal Harris Sets

Often we will be interested in determining the probability with which the network-
coalition formation process reaches a particular set of network-coalition pairs. In
particular, let

τ∗E := inf {n ≥ 1 : (G∗n, S∗n) ∈ E} = inf {n ≥ 1 :W ∗
n ∈ E}

be the hitting time of network-coalition formation process {W ∗
n}n for set E∈B(Ω),

and following in Tweedie (2001), let

L∗(ω, E) := Pr {τ∗E <∞|W ∗
0 = ω} = Pr {∪∞n=1 (W ∗

n ∈ E|W ∗
0 = ω)} (16)

denote the probability of hitting (or reaching) in finite time the set of network-
coalition pairs E starting from network-coalition pair ω ∈ Ω given transition p∗(·|·) =
q(·|·,σ∗λD (·)).

Also, we will often be interested in determining the probability with which the
network-coalition formation process reaches a particular set of network-coalition pairs
infinitely often (denoted by i.o.). This probability is given by

Q∗(E|ω) := Pr {W ∗
n ∈ E i.o.|W ∗

0 = ω}

= Pr {∩∞m=1 ∪∞n=m (W ∗
n ∈ E|W ∗

0 = ω)} for all ω ∈ Ω.

⎫⎬⎭ (17)

By the Orey (1971), we know that

if for any E ∈ B(Ω), L∗(ω, E) = 1 for all ω ∈ Ω, then Q∗(E|ω) = 1 for all ωΩ.
(18)

The network-coalition formation process {W ∗
n}n governed by p∗(·|·) is said to be

ψ-irreducible if for some nontrivial measure ψ(·) on B(Ω),

ψ(E) > 0 implies L∗(ω, E) > 0 for all ω ∈ Ω.
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Thus if the process {W ∗
n}n governed by p∗(·|·) is ψ-irreducible, then it hits all the

“important” sets of network-coalition pairs (i.e., the sets E such that ψ(E) > 0)
with positive probability starting from any network-coalition pair in the state space
Ω = G×F .

A set of network-coalition pairs H∈B(Ω) is called a Maximal Harris set if

(i) there exists a measure ϕ(·) on B(Ω) with ϕ(H) > 0 such that ϕ(A) > 0 implies
L∗(ω, A) = 1 for all ω ∈ H, and

(ii) every network-coalition ω = (G,S) such that L∗(ω,H) = 1 is contained in H.

Note that Maximal Harris sets are absorbing; that is, p∗(H|ω) = q(H|ω,σ∗λD (ω)) =
1 for all network-coalition pairs G ∈ H. Moreover, if H and H � are distinct Maximal
Harris sets, then they are disjoint.

A set of network-coalition pairs T∈B(Ω) is transient if T is the disjoint union
of countably many uniformly transient sets Uj , that is, sets Uj∈B(Ω) such that
T = ∪jUj and for each set there is a finite constant Mj , such that for all network-
coalition pairs ω ∈ Uj ,

Eω[ηUj ] =
∞[
n=1

p∗n(Uj |ω) < Mj . (19)

A set of network-coalition pairs E ∈ B(Ω) is said to be p∗−inessential if

Q∗(E|ω) = 0 for all ω ∈ Ω. (20)

Thus, a set of states E is inessential if the probability that the network-coalition
formation process visits the set E infinitely often is zero stating from any state. If a
set of states is inessential, then if the process visits the state at all, it leaves the state
for good after finitely many moves. Let

M∗ = {E ∈ B(Ω) : Q∗(E|ω) = 0 for all ω ∈ Ω} , (21)

denote the inessential states. The union of countable many inessential states is called
an improperly p∗−essential set . Any other set is called properly p∗−essential .

4.4 The Fundamental Conditions for Stability: Drift and Global
Uniform Countable Additivity

Given the Markov transition ω → p∗(·|ω) what can be said concerning stability?
Quite a bit if the Markov transition p∗(·|·) satisfies the following two conditions:

The Tweedie Conditions (2001):

there exists a measurable set of network-coalition pairs C ⊆ Ω, a nonnegative mea-
surable function

V (·) : Ω→[0,∞],
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and a finite b such that (i) (the drift condition) for all ω ∈ Ω]
Ω
V (ω�)dp∗(ω�|ω) ≤ V (ω)− 1 + bIC(ω),

and (ii) (uniform countable additivity) for any sequence {Bn}n ⊂ B(Ω) decreasing
to ∅ (i.e., Bn ↓ ∅),

lim
n→∞ supω∈C

p∗(Bn|ω) = 0.

We shall say that the Markov transition p∗(·|·) satisfies global uniform countable
additivity if for any sequence {Bn}n ⊂ B(Ω) decreasing to ∅ (i.e., Bn ↓ ∅),

lim
n→∞ supω∈Ω

p∗(Bn|ω) = 0, (22)

and we will say that the Tweedie conditions are satisfied globally if Tweedie conditions
hold with C = Ω.

We will show in Section 5 below, using some beautiful results by Meyn and
Tweedie (1993a), Chen and Tweedie (1997), Tweedie (2001) and Costa and Du-
four (2005), that if the emergent Markov transition p∗(·|·) governing the equilibrium
process of network and coalition formation is globally uniformly countable additive,
then the equilibrium process possesses some striking stability properties - similar to
those demonstrated in Page and Wooders (2007) for static abstract games of network
formation.

To begin let us strengthen slightly our stochastic continuity assumption A-3(ii)
as follows:

A-3 (ii)’ for all dΩ-closed F ∈ B(Ω), the function

(ω,ωD)→ q(F |ω,ωD)

is continuous over the graph of Φ(·).

21



Theorem 2 (Setwise Convergence on Closed Sets and Global Uniform Countable
Additivity)

Given that the state space (Ω, B(Ω)) of networks and coalitions is a compact metric
space, if the law of motion is such that q(F |·, ·) is continuous on the graph
of Φ(·) for all dΩ-closed sets F of network-coalition pairs (i.e., if A-3(ii)’ is
satisfied), then p∗(·|·) is globally uniformly countable additive.

Proof. Let M(Ω) denote the Banach space of bounded measurable functions on
(Ω, B(Ω)), equipped with the sup norm and let rca(Ω) denote the Banach space of
finite signed Borel measures on (Ω, B(Ω)). First, observe that the set of probability
measures

ΠΦ := {q(·|ω,ωD) : (ω,ωD) ∈ GrΦ(·)}
is sequentially compact in the σ(rca(Ω),M(Ω)) topology. This follows becauseGrΦ(·)
is a compact metric space and because by Delbaen’s Lemma (1974),

(ωn,ωnD)→ (ω,ωD))

implies that]
Ω
v(ω�)q(dω�|ωn,ωnD)→

]
Ω
v(ω�)q(dω�|ω,ωD)) for all v(·) ∈M(Ω).

By Corollary 2.2 in Lasserre (1998), therefore,

lim
k→∞

sup
(ω,ωD)∈GrΦ(·)

]
Ω
vk(ω

�)q(dω�|ω,ωD) = 0 (23)

whenever vk(·) ↓ 0, vk(·) ∈M(Ω).
To see that (23) implies global uniform countable additivity (22), consider a se-

quence {Bk}k ⊂ B(Ω) decreasing to ∅ (i.e., Bk ↓ ∅) and let vk(·) := IBk(·), where

IBk(ω) =

�
1 if ω ∈ Bk
0 if ω /∈ Bk.

We have IBk(·) ↓ 0, IBk(·) ∈M(Ω) and]
Ω
vk(ω

�)q(dω�|ω,ωD) = q(Bk|ω,ωD).

Finally, for each k let (ωk,ωkD) ∈ GrΦ(·) be such that
q(Bk|ωk,ωkD) = sup

(ω,ωD)∈GrΦ(·)
q(Bk|ω,ωD).

We have for all ω ∈ G,

p∗(Bk|ω) =
]
Φ(ω)

q(Bk|ω,ω�D)dσ∗λ(ω�D|ω) ≤ q(Bk|ωk,ωkD)→ 0.
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Remarks 2:Alternatively, global uniform countable additivity will be guaranteed if
instead of assuming A-3(ii)’, we add to our list of assumptions A-3 the following
assumption:

A-3 (iv) the densities f(·|ω,ωD) of q(·|ω,ωD) with respect to the dominating prob-
ability measure μ are integrably bounded, that is, there exists a μ-integrable function

h(·) : Ω→ R+

such that for all (ω,ωD) ∈ GrΦ(·),
0 ≤ f(ω�|ω,ωD) ≤ h(ω�) for all ω� ∈ Ω. (24)

With this additional assumption, we have for any sequence {Bn}n ⊂ B(Ω) de-
creasing to ∅ (i.e., Bn ↓ ∅),

p∗(Bn|ω) =
U
Bn
dq(ω�|ω,σ∗λD (ω))

=
U
Φ(ω)

U
Bn
dq(ω�|ω,ω�D)dσ∗λD (ω�D|ω))

=
U
Φ(G)

�U
Bn
f(ω�|ω,ω�D)dμ(ω�)

�
dσ∗λD (ω

�
D)|ω))

≤ UBn h(ω�)dμ(ω�)→ 0 as Bn ↓ ∅.

Let A-3
�
denote the altered or augmented set of assumptions A-3 (i.e., either altered

by A-3 (ii)’ or augmented by A-3 (iv)).
By Theorem 2, under assumptions A-1, A-2, A-3’, the equilibrium Markov tran-

sition p∗(·|·) governing the process of network and coalition formation satisfies global
uniform countable additivity. As a consequence by letting C equal the entire state
space Ω, V (ω) = 1 for all ω ∈ Ω, and b = 2, it is easy to see that the drift condition
in the Tweedie conditions is also satisfied. Thus by Theorem 2, the Tweedie con-
ditions are satisfied globally (i.e., with C = Ω), and thus by strengthening slightly
the stochastic continuity conditions the law of motion q(·|·, ·) must satisfy in the first
place to guarantee the existence of an equilibrium Markov transition, p∗(·|·), we will
be able to show that even though uncountably many networks may form, the equi-
librium process of network and coalition formation possesses only a finite number of
basins of attraction.

5 Basins of Attraction, Invariance, and Ergodicity

We now have our first result concerning stochastic basins of attraction and the sta-
bility of the emergent network-coalition formation process

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

governed by p∗(·|·).
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Theorem 3 (Basins of Attraction: The Atomic Decomposition of the State Space)

Under assumptions [A-1], [A-2] and [A-3’], the emergent network-coalition forma-
tion process

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

governed by the equilibrium Markov transition p∗(·|·) = q(·|·,σ∗λD (·)) generates
a unique finite set of infinite atoms A∞∗ and a unique finite decomposition of
the state space of network-coalition pairs Ω = G×F given by

Ω=
�∪Ni=1Ai� ∪ T , (25)

where {A1, . . . , AN} = A∞∗ is the set of infinite atoms and T is improperly
essential. Moreover, A∞∗ = A∗ (all atoms are infinite), each atom is a Maximal
Harris set, and

L∗(ω,∪iAi) = 1 (26)

for every network-coalition pair ω ∈ Ω.

Proof. Because the Tweedie conditions hold globally under our assumptions [A-1],
[A-2] and [A-3’], by Theorem 2 in Tweedie (2001), the state space Ω admits a finite
decomposition

Ω=
�∪Ni=1Hi� ∪ TH

where each Hi is indecomposable and Maximal Harris and TH is transient. Moreover
this Harris decomposition is such that L∗(ω,∪Ni=1Hi) = 1 for all ω ∈ Ω. By Jamison
(1972) and Winkler (1975) in fact each Harris set Hi is properly essential and TH
is also improperly essential. Because the state space of network-coalition pairs is a
compact metric space, and therefore second countable, it follows from Theorem 5.8
in Chen and Tweedie (1997) (see the proof) that each Harris set is given uniquely as

Hi = Ai ∪Ei
where Ai is an atom and Ei is improperly essential. Because Hi is indecomposable
and Ai is an atom, Ei is indecomposable. Therefore by Theorem 6 in Jain and
Jamison (1967), Ei is transient, and it follows from Theorem 2 in Tweedie (2001)
that because Hi is p∗-absorbing, Ei being transient implies that L∗(ω, Ai) = 1 for all
ω ∈ Hi. Moreover, by Proposition 5.3 in Chen and Tweedie (1997), each atom Ai is
an infinite atom. Thus we have the desired unique, atomic decomposition

Ω=
�∪Ni=1Hi� ∪ TH = �∪Ni=1(Ai ∪Ei)� ∪ TH = �∪Ni=1Ai� ∪ �∪Ni=1Ei� ∪ TH , (*)

where the transient set T is given by
�∪Ni=1Ei�∪TH . Moreover, because L(ω, Ai) = 1

for all ω ∈ Hi and L(ω,∪Ni=1Hi) = 1 for all ω ∈ Ω, we have L∗(ω,∪iAi) = 1 for all
ω ∈ Ω.

Because T is transient and the Ai are atoms, we conclude that all the atoms in
A∗ must be used in the decomposition (*) and since each atom in the decomposition
must be infinite, we must also conclude that A∞∗ = A∗. Finally, by Theorem 3 of
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in Jain and Jamison (1967), because each atom Ai is indecomposable and essential,
each Ai is maximal Harris.

Each infinite atom forms a basin of attraction of the emergent Markov network
and coalition formation process governed by the equilibrium transition p∗(·|·) =
q(·|·,σ∗λD (·)). In particular, starting at any network-coalition pair not contained in an
absorbing atom, the network and coalition formation process will reach some atom
in a finite number of moves with probability 1. Moreover, once the process has en-
tered a particular atom it stays there with probability 1. The remarkable fact here
is that even though there are possibly uncountably many networks, there is only fi-
nitely many atoms - and they are unique to the equilibrium process determined by
the dynamic, stochastic game of network and coalition formation. A analogous con-
clusion is reached in Page and Wooders (2008) for static, abstract games of network
formation over finitely many networks. There it is shown that no matter what rules
of network formation prevail, given any profile of player preferences the feasible set of
networks contains a finite, disjoint collection of sets each set representing a strategic
basin of attraction in the sense that if the game is repeated - each time starting at the
status quo network reached in the previous play of the game - the process of network
formation generated by repeating this static game will reach a network contained in
some strategic basin and once there will stay there. Thus, these strategic basin of
attraction represent the absorbing atoms of the static game of network formation.

The Harris decomposition in Theorem 3 is also a Doeblin decomposition (see
Meyn and Tweedie (1993b) and Tweedie (1976)).

Theorem 4 (Invariance and Ergodicity of the Process of Network and Coalition
Formation)

Suppose assumptions [A-1], [A-2] and [A-3’] hold. Let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) = q(·|·,σ∗λD (·)), and let

Ω=
�∪Ni=1Ai� ∪ T ,

be the corresponding unique atomic decomposition where {A1, . . . , AN} = A∞∗
is the set of infinite atoms and T is improperly essential.

The following statements are true:

(1) Corresponding to each basin of attraction Ai, there is a unique p∗-invariant
probability measure λi(·) with λi(Ai) = 1. Moreover, For each network-coalition
pair ω = (G,S),

p∗(n)(E|ω) := 1

n

n[
k=1

p∗k(E|ω) n→
N[
i=1

L∗(ω, Ai)λi(E ∩Ai), for all E ∈ B(Ω).
(27)

where p∗k(E|ω) is defined recursively, see (10).
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(2) The set of all ergodic probability measures is given by

E∗ = {λi(·)}Ni=1 .

Moreover, a probability measure λ(·) on (Ω, B(Ω)) is p∗-invariant, i.e. λ(·) ∈
I∗, if and only if

λ(·) is given by

λ(E) =
N[
i

λ(Ai)λi(E ∩Ai), for all E ∈ B(Ω). (28)

(3) E∗ is a singleton (i.e., E∗ = {λ(·)}) if and only if the network-coalition formation
process {W ∗

n}n is ψ-irreducible, in which case for each network-coalition pair
ω = (G,S) and for every set of network-coalition pairs E∈B(Ω)

1

n

n[
k=1

p∗k(E|ω) n→ λ(E).

Proof. (1) Under our assumptions [A-1], [A-2] and [A-3’] (see the proof of Theorem 2
above), p∗(·|·) satisfies the Tweedie conditions globally. As a result, the first statement
in part (1) is an immediate consequence of Lemma 5 in Tweedie (2001). The second
statement also follows from the Tweedie conditions holding globally and Theorem 1
in Tweedie (2001) (also, see Chapter 13 in Meyn and Tweedie (1993a)).

(2) Again because the Tweedie Conditions are satisfied globally, the first state-
ment in part (2) follows from Lemma 2 in Tweedie (2001), Theorem 2.18 in Costa
and Dufour (2005), part (1) of this Theorem, and Theorem 3.8 in Costa and Dufour,
and the proof of Proposition 5.3 in Costa and Dufour. For the second statement in
part (2): λ(·) ∈ I∗ implies (28) follows from the proof of Proposition 5.3 in Costa
and Dufour. The fact that (28) implies λ(·) ∈ I∗ follows from observation (but also,
see Theorem 19.25 in Aliprantis and Border (1999)).

(3) Finally, because the Tweedie Conditions are satisfied globally, necessary and
sufficient conditions for E∗ to be a singleton, given in terms of ψ-irreducibility follow
from Theorem 3 in Tweedie (2001). The convergence result in part (3) follows from
the convergence result in part (1) of the Theorem and the fact that if there is only
one basin of attraction A (i.e., one atom or equivalently, one maximal Harris set),
then by Theorem 3, L∗(ω,H) = 1 for all ω ∈ Ω.

Note that the probability measures in E∗ are orthogonal, that is, for all i and i�
in {1, 2, . . . , N} with i 9= i�,

λi(Ω\Ai) = λi� (Ai) = 0.

5.1 Ergodic Properties of the Strategic Values

For each starting network-coalition pair ω = (G,S) ∈ Ω, w∗d(ω) is the strategic value
to player d of following his part of the stationary correlated equilibrium strategies
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σ∗λD (·), given that all other players follow their parts of the strategy. Because σ∗λD (·)
is Nash, we know this is the best that player d can do relative to all other strategies,
even those that are history dependent. Strategies σ∗λD (·) together with the trembles of
nature determine the equilibrium Markov process of network and coalition formation
via the transition p∗(·|·) = q(·|·,σ∗λD (·)). The questions we wish to address in this
section concern the properties of players’ strategic values across time and states given
the equilibrium process of network and coalition formation.

We begin by considering time averages. Let

p∗(n)w∗d(ω) =
1

n

n[
k=1

]
Ω
w∗d(ω

�)p∗k(dω�|ω) =
]
Ω
w∗d(ω

�)p∗(n)(dω�|ω),

where recall,

w∗d(ω) = Ed(σ
∗λ
D )(ω) :=

S∞
n=1 β

n−1
d rnd (σ

∗λ
D )(ω)

= rd(ω,σ
∗λ
D (ω)) + βd

U
Ωw

∗
d(ω

�)dq(ω�|ω,σ∗λD (ω))
and

p∗(n)(E|ω) = 1
n

Sn
k=1 p

∗k(E|ω) = 1
n

Sn
k=1

U
Ω p

∗(E|ω�)p∗k−1(dω�|ω).
Here, p∗k(E|ω) is the probability that process reaches the set of network-coalition
pairs E starting at network-coalition pair ω = (G,S) in k periods or moves.

The function p∗(n)w∗d(·) specifies for each starting network-coalition pair, player
d’s n-period time average expected strategic value (i.e., the average value of following
his part of the stationary correlated equilibrium strategies σ∗λD (·) for n moves). We
can think of limn p∗(n)w∗d(·) therefore as specifying for each starting network-coalition
pair, player d’s time average expected value.

By part (4) of Theorem 4 above, we have for all ω ∈ Ω and E ∈ B(Ω)

p∗(n)(E|ω) = 1

n

n[
k=1

p∗k(E|ω) n→
N[
i=1

L∗(ω, Ai)λi(E∩Ai) = λω(E), (29)

where λω(·) ∈ I∗ for all ω ∈ Ω and {λi(·) : i = 1, 2, . . . , N} = E∗. Because p∗(n)(·|ω)
converges setwise for all ω, by Delbaen’s Lemma (1974) we have for all ω ∈ Ω

p∗(n)w∗d(ω)→
N[
i=1

L∗(ω, Ai)
]
Hi

w∗d(ω
�)dλi(ω�). (30)

Thus, we obtain one of the fundamental principles of equilibrium dynamics: the
equality of time averages and state averages.

Theorem 5 (The Equality of Time Average Values and State Average Values)

Under assumptions [A-1], [A-2] and [A-3’] the emergent network-coalition formation
process

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

governed by the equilibrium Markov transition p∗(·|·) = q(·|·,σ∗λD (·)) is such
that:
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(1) for each player d starting at any network-coalition pair ω = (G,S) contained
in a basin of attraction Ai the time average value of the equilibrium strategies
σ∗λD is equal to state average value of the equilibrium strategies, that is, for all
basins of attraction Ai and for all initial states ω = (G,S) ∈ Ai,

lim
n
p∗(n)w∗d(ω)� ~} �

time average

=

]
Ai

w∗d(ω
�)dλi(ω�).� ~} �

state average

(31)

Moreover, for all initial states ω = (G,S) ∈ Ω,

lim
n
p∗(n)w∗d(ω) =

N[
i=1

L∗(ω, Ai)
]
Ai

w∗d(ω
�)dλi(ω�) (32)

(2) For all invariant measures λ(·) ∈ I∗]
Ω
f∗d (ω

�)dλ(ω�) =
]
Ω
w∗d(ω

�)dλ(ω�), (33)

where

f∗d (ω) :=
N[
i=1

L∗(ω, Ai)
]
Ai

w∗d(ω
�)dλi(ω�) for all ω ∈ Ω. (34)

Proof. (1) Part (1) is an immediate consequence of part (4) of Theorem 4, Delbaen’s
Lemma (1974), and the fact that for all basins Ai and all states ω ∈ Ai, L∗(ω, Ai) = 1.

(2) Let invariant probability measure λ(·) =SN
i=1 λ(Ai)λi(·) ∈ I∗ be given. We

haveU
Ωw

∗
d(ω

�)dλ(ω�) =
SN
i=1 λ(Ai)

U
Ωw

∗
d(ω

�)dλi(ω�) =
SN
i=1 λ(Ai)

U
Ai
w∗d(ω

�)dλi(ω�)
andU

Ω f
∗
d (ω

�)dλ(ω�) =
SN
i=1 λ(Ai)

U
Ω f

∗
d (ω

�)dλi(ω�) =
SN
i=1 λ(Ai)

U
Ai
f∗d (ω

�)dλi(ω�)

Letting
U
Ai
w∗d(ω

�)dλi(ω�) := w∗d(Ai), we haveU
Ai
f∗d (ω

�)dλi(ω�) =
U
Ai

kSN
i=1 L

∗(ω�, Ai)w∗d(Ai)
l
dλi(ω

�).

Moreover, because for all ω� ∈ Ai, L∗(ω�, Ai) = 1 and L∗(ω�, Ai�) = 0, for all i� 9= i,U
Ai

kSN
i=1 L

∗(ω�, Ai)w∗d(Hi)
l
dλi(ω

�) = w∗d(Ai) =
U
Ai
w∗d(ω

�)dλi(ω�).
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Thus we have for each iU
Ai
f∗d (ω

�)dλi(ω�) =
U
Ai
w∗d(ω

�)dλi(ω�),

and thus,U
Ω f

∗
d (ω

�)dλ(ω�) =
SN
i=1 λ(Ai)

U
Ai
f∗d (ω

�)dλi(ω�)

=
SN
i=1 λ(Ai)

U
Ai
w∗d(ω

�)dλi(ω�)

=
U
Ωw

∗
d(ω

�)dλ(ω�).

Also see Birkhoff’s Ergodic Theorems (pointwise and mean), for example, Theo-
rems 2.3.4 and 2.3.5 in Hernandez-Lerma and Lasserre (2003)).

By part (1) of Theorem 4, each player’s time average value limn p∗(n)w∗d(ω) =
f∗d (ω) is constant with respect to the starting network-coalition pair on each basin of
attraction. In particular,

lim
n
p∗(n)w∗d(ω) =

]
Ω
w∗d(ω

�)dλ(ω�) =
]
Ai

w∗d(ω
�)dλi(ω�) for all ω ∈ Ai.

By part (2) of Theorem 4, for any given invariant probability measure each player’s
average of time averages over the entire state space is equal to his state average over
the entire state space with respect to the given measure.

6 Strategic Stability and Dynamic Consistency in Net-
work and Coalition Formation

To begin, let σ∗λD (·) = (σ∗λd (·|·))d∈D be the stationary correlated equilibrium with
corresponding globally uniformly countable additive equilibrium Markov transition
p∗(·|·) = q(·|·,σ∗λD (·)). Also, let

Ω=
�∪Ni=1Ai� ∪ T ,

be the unique finite atomic decomposition generated by p∗(·|·) with basins of attrac-
tion Ai and transient set T (where each Ai is an infinite atom) . Finally, let

E∗ = {λi(·)}Ni=1 ,
be the corresponding set of ergodic probability measures with λi(Ai) = 1 for all i.

Each player’s strategy, σ∗λd (·|·), is itself a Markov transition - an equilibrium
Markov proposal transition - and governs the way in which player d tries to influence
the process of network and coalition formation across time. The questions we wish to
address in this section concern the relationships which exist between the invariance,
ergodicity, and state space decomposition properties of Markov proposal transitions
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(σ∗λd (·|·))d∈D and the invariance, ergodicity, and decomposition properties of the in-
duced equilibrium Markov network-coalition transition, p∗(·|·) = q(·|·,σ∗λD (·)). When
are they consistent in some sense and what implications does this have.

To save writing, we will refer to the equilibrium Markov proposal transitions,
(σ∗λd (·|·))d∈D, simply as the proposal transitions, and we will refer to the induced
equilibrium Markov network-coalition transition, p∗(·|·) = q(·|·,σ∗λD (·)), as the state
transition.

6.1 Strategic Stability and Dynamic Consistency

Given that the state space consists of network and coalition pairs and given the rules
of network and coalition formation as represented via the set of feasible network-
coalition pairs G, the feasible set of coalitions F ⊆ P (D), and the player constraint
correspondences,

{Φd(·, ·)}d∈D = {Γd(·, ·)× Λd(·, ·)}d∈D ,
we are able to give formal definitions of strategic stability and dynamic consistency.

Definitions 5 (Strategic Stability and Dynamic Consistency)

(1) (Strategic Stability)

A set of network-coalition pairs H ∈ B(Ω) is strategically stable if in all states
(G,S) ∈ H each player d ∈ D proposes states in H with probability 1, that is,
if

σ∗λd (H|G,S) = 1 for all (G,S) ∈ H.
(2) (Dynamic Consistency)

A strategically stable set of network-coalition pairs H ∈ B(Ω) is dynamically consis-
tent if for in all states (G,S) ∈ H nature chooses states in H with probability
1, that is, if

p∗(H|G,S) = 1 for all (G,S) ∈ H.

Thus, a set of network-coalition pairs H ∈ B(Ω) is strategically stable if and only
if

H ∈ ∩d∈DL∗λd ,
where L∗λd denotes the set of absorbing sets corresponding to player d’s Markov
proposal strategy σλd(·|·), and H is dynamically consistent if and only if

H ∈ ∩d∈DL∗λd ∩ L∗

where recall L∗ denotes the set of absorbing sets corresponding to the equilibrium
Markov transition p∗(·|·).

The following result characterizes dynamic strategic stability and dynamic con-
sistency. The proof is straightforward.
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Theorem 6 (Dynamic Consistency and Invariance)

Suppose assumptions [A-1], [A-2] and [A-3’] hold and let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) = q(·|·,σ∗λD (·)).

If H is dynamically consistent, then starting at any network-coalition pair contained
in H, the network-coalition formation process will reach in finite time a basin
Ai, that is, an infinite atom contained in H, and will remain there. Moreover,
there exists a p∗-invariant probability measure which assigns positive measure
to H.

Given the definition of an infinite atom and given that each basin Ai in the decom-
position of the state space is an infinite atom, it must be true that any p∗-absorbing
set contains one or more of the basins. Let us suppose then that dynamically consis-
tent set H ∈ B(Ω) contains basins Ai and Ai� , and consider any p∗-invariant measure
λ(·) such that λ(H) = 1. By part (2) of Theorem 4 above we have,

λ(H) =
SN
i�� λ(Ai��)λi��(H ∩Ai��)

= λ(Ai)λi(H ∩Ai) + λ(Ai�)λi�(H ∩Ai�)

= λ(Ai) + λ(Ai�).

Thus, under any p∗-invariant measure λ(·) the measure of any absorbing set H is the
sum of the probability masses the invariant measures λ(·) assigns to each basin (i.e.,
infinite atom) contained in H.

6.2 Dynamic Path dominance Core and Dynamic Pairwise Stability

One way to extend the definition of the path dominance core introduced in Page and
Wooders (2007) to the dynamic setting considered here is as follows:

Definition 6 (The Dynamic Path Dominance Core)

A network G∗ ∈ G is in the dynamic path dominance core if the set of states
{G∗} × F ∈ B(Ω) is dynamically consistent.

We have the following characterization.
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Theorem 7 (The Dynamic Path Dominance Core and Invariance)

Suppose assumptions [A-1], [A-2] and [A-3’] hold and let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) = q(·|·,σ∗λD (·)).

If network G∗ ∈ G is in the dynamic path dominance core, that is, if {G∗} × F
is dynamically consistent, then starting at any network-coalition pair contained
in {G∗} × F , the network-coalition formation process will reach in finite time
a basin Ai, that is, an infinite atom contained in {G∗} × F , and will remain
there. Moreover, there exists a p∗-invariant probability measure which assigns
positive measure to {G∗} × F .

Because each basin is an infinite atom, we must conclude that if the dynamic path
dominance core is nonempty, then it can contain no more than |A∞∗| many networks.
Moreover, each basin must be of the form

Ai = {G∗} × Ci,

where Ci ⊆ F and Ci ∩ Ci� = ∅ for all i� 9= i.
Note that if p∗({G∗}×F|G∗, S) = 1 for all S ∈ F , then because the law of motion

q(·|(G,S), (GDSD))

is absolutely continuous with respect the probability measure μ = ν × γ for all
((G,S), (GD, SD)) ∈ GrΦ(·), G∗ must be an atom of the probability measure ν (not
to be confused with an absorbing atom), that is,

G∗ ∈ Aν = {Gα1, Gα2, . . .} = {Gαk}∞k=1 .

Moreover, no network G ∈ G\Aν , can be in the dynamic path dominance core.
To extend the definition of the pairwise stability introduced in Jackson and Wolin-

sky (1996) to the dynamic setting considered we begin by specializing the feasible set
of coalitions to coalitions of size no greater than 2.
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Definition 7 (Dynamic Pairwise Stability)

Suppose the feasible set of coalitions is given by

F2 = {S ∈ P (D) : |S| ≤ 2} .
(i.e., all feasible coalitions consist of at most two players). Then a network
G∗ ∈ G is dynamically pathwise stable if the set of states {G∗} × F2 ∈ B(Ω) is
dynamically consistent.

We have the following characterization

Theorem 8 (Dynamic Pairwise Stability and Invariance)

Suppose assumptions [A-1], [A-2] and [A-3’] hold and let

{W ∗
n}n = {(G∗n, S∗n)}∞n=1

be the emergent network-coalition formation process governed by the equilibrium
Markov transition p∗(·|·) = q(·|·,σ∗λD (·)).

If network G∗ ∈ G is dynamically pairwise stable, that is, if {G∗}×F2 is dynamically
consistent, then starting at any network-coalition pair contained in {G∗}×F2,
the network-coalition formation process will reach in finite time a basin Ai, that
is, an infinite atom contained in {G∗} × F2, and will remain there. Moreover,
there exists a p∗-invariant probability measure which assigns positive measure
to {G∗} × F2.

Our conclusion that {G∗} × F2 is contained in the support of some p∗-invariant
measure is similar to the conclusion reached by Jackson and Watts (2002) for a sto-
chastic process of network formation over a finite set of linking networks governed by
Markov chain generated by myopic players. They reach their conclusion by consider-
ing a sequence of perturbed irreducible and aperiodic Markov chains (i.e., each with
a unique invariant measure) converging to the original Markov chain. This method
is similar to a method introduced into games by Young (1993) which in turn is based
on some very general perturbation methods found in Freidlin and Wentzell (1984).
Here we have reached a similar conclusions without using perturbation methods.

7 Proof of Theorem 1: The Existence of Stationary Cor-
related Equilibrium

Proof. To begin let V be the set of all μ-equivalence classes of B(Ω)-measurable
functions, v(·) : Ω→[−M,M ] called value functions. Because Ω is a compact metric
space, the space of μ-equivalence classes of μ-integrable functions, L1(Ω, B(Ω),μ), is
separable. As a consequence the set of value functions V is a compact and metrizable
subset of L∞(Ω, B(Ω),μ) for the weak star topology σ(L∞,L1). Letting

Vm =V× · · · × V� ~} �
m:=|D| times

,
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Vm equipped with the product topology σm(L∞,L1) is also compact and metrizable
- and convex.

Given status quo state ω ∈ Ω, m-tuple of probability measure σ = (σd) ∈
Πd∈DP (Φd(ω)), and m-tuple of value functions v = (vd) ∈ Vm define

ud(ω,σ)(vd) := (1− βd)rd(ω,σ) + βd

]
Ω
vd(ω

�)dq(ω�|ω,σ).

The proof will proceed in 5 steps:
Step 1 : Let

V (ω,σ)(v) :=
S
d

�
ud(ω, (σd,σ−d))(vd)−maxη∈P(Φd(ω)) ud(ω, (η,σ−d))(vd)

�
,

and consider the correspondence ω → Nv(ω) where

Nv(ω) := {σ : V (ω,σ)(v) = 0} .
Note that σ = (σd) ∈ Nv(ω) if and only if for each player d ∈ D,

ud(ω, (σd,σ−d))(vd) ≥ ud(ω, (η,σ−d))(vd) for all η ∈ P (Φd(ω)) .
Thus, ω → Nv(ω) is the Nash correspondence. Given stochastic continuity assump-
tion [A-3](ii) it follows from Delbaen’s Lemma (1974) that

(ωd)→
]
Ω
vd(ω

�)dq(ω�|ω, (ωd))

is continuous for any vd(·) ∈ V. Thus, for ω ∈ Ω and vd(·) ∈ V
σ → ud(ω,σ)(vd) and σ → V (ω,σ)(v)

are continuous on Πd∈DP (Φd(ω)) with respect to the compact and metrizable topol-
ogy of weak convergence of probability measures. Thus, for all for ω ∈ Ω and
v(·) ∈ Vm, Nv(ω) is a nonempty, compact subset of Πd∈DP (Φd(ω))and by Theo-
rem 6.4 in Himmelberg (1975) Nv(·) is measurable.

Step 2 : Consider the induced payoff correspondence given by

Pv(ω) := {(Ud) ∈ Rm : (Ud) = (ud(ω,σ)(vd)) for some σ ∈ Nv(ω)} .
By Theorem 6.5 in Himmelberg (1975) the payoff correspondence ω → Pv(ω) is
measurable with nonempty, compact values, and by Theorem 9.1 in Himmelberg
(1975) the correspondence

ω → coPv(ω)

is measurable with nonempty, compact convex values.
Step 3 : The Nowak-Raghavan Lemma.
Let Σ(coPv(·)) be the set of all μ-equivalence classes of measurable selectors

of ω → coPv(ω), v ∈ Vm. The Nowak-Raghavan Lemma states that the pay-
off selection correspondence v → Σ(coPv(·)) is upper semicontinuous with non-
empty convex, weakly compact values. Convexity, weak compactness, and non-
emptiness are straightforward. We need only prove upper semicontinuity. To this
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end, let Gr
�
Σ(coP(·)(·))

�
denote the graph of the payoff selection correspondence

and let {(Un(·), vn(·))}n be a sequence in Gr
�
Σ(coP(·)(·))

�
converging weakly to

(U∗(·), v∗(·)). In order to establish that the payoff selection correspondence is up-
per semicontinuous we must show that (U∗(·), v∗(·)) ∈ Gr �Σ(coP(·)(·))�, that is, we
must show that U∗(ω) ∈ coPv∗(ω) a.e. [μ].

The proof of this lemma proceeds in three steps:
First, given state ω ∈ Ω and sequence vn(·)→ v∗(·), let {σn(ω)}n be a sequence

in Πd∈DP (Φd(ω)) such that σn(ω) ∈ Nvn(ω) for all n. Without loss of generality,
suppose that σn(ω)→ σ∗(ω) ∈ Πd∈DP (Φd(ω)) with respect to the topology of weak
convergence of probability measures. Then for all players d ∈ D,

ud(ω,σ
n(ω))(vnd )→ ud(ω,σ

∗(ω))(v∗d).

To see this, observe the following:

|ud(ω,σn(ω))(vnd )− ud(ω,σ∗(ω))(v∗d)|

≤|ud(ω,σn(ω))(vnd )− ud(ω,σ∗(ω))(vnd )|� ~} �
An

+ |ud(ω,σ∗(ω))(vnd )− ud(ω,σ∗(ω))(v∗d)|� ~} �
Bn

.

|ud(ω,σn(ω))(vnd )− ud(ω,σ∗(ω))(vnd )|� ~} �
An

≤Mβd

���UΩ UΦ(ω) dq(ω�|ω, (ωd))dσn((ωd)|ω)
− UΩ UΦ(ω) dq(ω�|ω, (ωd))dσ∗((ωd)|ω)���
=Mβd

���UΦ(ω) q(Ω|ω, (ωd))dσn((ωd)|ω)
− UΦ(ω) q(Ω|ω, (ωd))dσ∗((ωd)|ω))��� .
|ud(ω,σ∗(ω))(vnd )− ud(ω,σ∗(ω))(v∗d)|� ~} �

Bn

= βd

���UΩ UΦ(ω) vnd (ω�)dq(ω�|ω, (ωd))dσ∗((ωd)|ω)
− UΩ UΦ(ω) v∗d(ω�)dq(ω�|ω, (ωd))dσ∗((ωd)|ω)���

= βd

���UΦ(ω) UΩ vnd (ω�)dq(ω�|ω, (ωd))dσ∗((ωd)|ω)
− UΦ(ω) UΩ v∗d(ω�)dq(ω�|ω, (ωd))dσ∗((ωd)|ω)��� .
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By Delbaen’s Lemma, q(Ω|ω, (ωd)) is continuous in (ωd). Thus, since σn(·|ω) →
σ∗(·|ω) with respect to weak convergence of probability measures,

Mβd

]
Φ(ω)

q(Ω|ω, (ωd))dσn((ωd)|ω)→Mβd

]
Φ(ω)

q(Ω|ω, (ωd))dσ∗((ωd)|ω)),

so that An → 0.
Next, given that the probability measures q(·|ω, (ωd)) are absolutely continuous

with respect to probability measure μ, vn(·) → v∗(·) weakly implies that for each
(ωd) ]

Ω
vnd (ω

�)dq(ω�|ω, (ωd))→
]
Ω
v∗d(ω

�)dq(ω�|ω, (ωd)).

In particular, we have for each (ω, (ωd))

Fn(ω, (ωd)) :=
U
Ω v

n
d (ω

�)dq(ω�|ω, (ωd)) =
U
Ω v

n
d (ω

�)f(ω�|ω, (ωd))dμ(ω)

→ U
Ω v

∗
d(ω

�)f(ω�|ω, (ωd))dμ(ω) =
U
Ω v

∗
d(ω

�)dq(ω�|ω, (ωd)) := F ∗(ω, (ωd)),

where f(ω�|ω, (ωd)) is the density of q(ω�|ω, (ωd)) with respect to μ. Thus, by the
Dominated Convergence Theorem

βd

]
Φ(ω)

Fn(ω, (ωd))dσ
∗((ωd)|ω)→ βd

]
Φ(ω)

F ∗(ω, (ωd))dσ∗((ωd)|ω)),

so that Bn → 0.
Therefore, we conclude that if vn(·) → v∗(·) and σn(ω) → σ∗(ω), then for all

players d ∈ D,
ud(ω,σ

n(ω))(vnd )→ ud(ω,σ
∗(ω))(v∗d).

Second, we have Un(·)→ U∗(·) weakly where for all n, Un(·) ∈ Σ(coPvn(·)), and
vn(·) → v∗(·) weakly where for all n, vn(·) ∈ Vm. By Proposition 1 in Page (1991),
we can assume without loss of generality that for some μ null set N (i.e., μ(N) = 0)

1

n

n[
k=1

Uk(ω)→ U(ω) and U(ω) ∈ coLs {Un(ω)} for all ω ∈ Ω\N .

Here “co” denotes convex hull and Ls {Un(ω)} is the set of limit point of the sequence
{Un(ω)}n. Now let U∗(·) be a measurable selector of coLs {Un(·)} such that U∗(ω) =
U(ω) for all ω ∈ Ω\N . Thus, U∗(ω) ∈ coLs {Un(ω)} for all ω ∈ Ω. By Theorem 8.2
in Wagner (1977) U∗(·) has a Caratheodory representation

U∗(ω) =
m[
i=0

α∗i(ω)U∗i(ω)

where the Rm-valued functions U∗0(·), U∗1(·), . . . , U∗m(·) are measurable selectors of
Ls {Un(·)} and the nonnegative functions α∗0(·),α∗1(·), . . . ,α∗m(·) are measurable
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with
Sm
i=0 α

∗i(ω) = 1 for all ω. Thus, for each i and each ω, Unk(ω) → U∗i(ω) for
some subsequence {Unk(ω)}k.

Third, the proof that the payoff selection correspondence v → Σ(coPv(·)) is upper
semicontinuous, will be complete if we show that U∗i(ω) ∈ coPv∗(ω). To accomplish
this, we need the following Lemma (*): If Un(ω)→ U∗i(ω) where Un(ω) ∈ coPvn(ω)
for all n and vn(·)→ v∗(·) weakly, then U∗i(ω) ∈ coPv∗(ω).

Proof of Lemma (*): Again by Theorem 8.2 in Wagner (1977) each Un(·) has a
Caratheodory representation

Un(ω) =
m[
i=0

αni(ω)Uni(ω)

where each Uni (ω) ∈ Pvn(ω). Thus, for each n, there exists σni (ω) ∈ Nvn(ω) such that
Uni (ω) = (ud(ω,σ

n
i (ω))(v

n
d )). Without loss of generality assume that

(αn0(ω),αn1(ω), . . . ,αnm(ω))→
n
(α∗0(ω),α∗1(ω), . . . ,α∗m(ω))

and
(σn0D (ω),σ

n1
D (ω), . . . ,σ

nm
D (ω))→

n
(σ∗0D (ω),σ

∗1
D (ω), . . . ,σ

∗m
D (ω)).

Now we have

Uni(ω) = (ud(ω,σ
ni
D (ω))(v

n
d ))→n (ud(ω,σ

∗i
D(ω))(v

∗
d)) ∈ Pv∗(ω).

Thus,

Un(ω) =
Sm
i=0 α

ni(ω)Uni(ω) =
Sm
i=0 α

ni(ω)(ud(ω,σ
ni
D (ω))(v

n
d ))

→
n

Sm
i=0 α

∗i(ω)(ud(ω,σ∗iD(ω))(v
∗
d)) = U

∗i(ω) ∈ coPv∗(ω),

and we can conclude that

for all ω,
U∗(ω) =

Sm
i=0 α

∗i(ω)U∗i(ω) ∈ coPv∗(ω),
completing the proof of the Nowak-Raghavan Lemma.

Step 4: Applying the Kakutani-Glicksberg Fixed Point Theorem (1952) to v →
Σ(coPv(·)) we obtain an m-tuple of value functions

v(·) = (vd(·)) ∈ Vm

such that
v(ω) ∈ coPv(ω) for all ω ∈ Ω\N where μ(N) = 0.

Let v∗(·) = (v∗d(·)) ∈ Vm be a measurable selection of coPv(·) such that v∗(ω) =
v(ω) for all ω ∈ Ω\N . Thus, v∗(ω) ∈ coPv(ω) for all ω ∈ Ω and because coPv(ω) =
coPv∗(ω) for all ω ∈ Ω, we have v∗(ω) ∈ coPv∗(ω) for all ω ∈ Ω.
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Step 5: Construct the solution to each player’s dynamic programming problem:
By Theorem 8.2 in Wagner (1977) v∗(·) has a Caratheodory representation

v∗(ω) =
m[
i=0

λ∗i(ω)v∗i(ω) for all ω

where for all i = 0, 1, . . . ,m, v∗i(·) ∈ Vm and v∗i(ω) ∈ Pv∗(ω) for all ω ∈ Ω. By the
Measurable Implicit Function Theorem (Theorem 7.1 in Himmelberg (1975)), there
exists for each i = 0, 1, . . . ,m, a measurable selection of Nv∗(·), that is, a measurable
function

ω → σ∗iD(ω) ∈ Πd∈DP (Φd(ω))
with σ∗iD(ω) ∈ Nv∗(ω) for all ω, such that for each player d ∈ D, i = 0, 1, . . . ,m, and
ω ∈ Ω

v∗id (ω) = ud(ω,σ
∗i
D(ω))(v

∗
d) := (1− βd)rd(ω,σ

∗i
D(ω)) + βd

]
Ω
v∗d(ω

�)dq(ω�|ω,σ∗iD(ω)).

Thus, for each player d ∈ D, and ω ∈ Ω
v∗d(ω) =

Sm
i=0 λ

∗i(ω)v∗id (ω)

= (1− βd)rd(ω,
Sm
i=0 λ

∗i(ω)σ∗iD(ω)) + βd
U
Ω v

∗
d(ω

�)dq(ω�|ω,Sm
i=0 λ

∗i(ω)σ∗iD(ω))

For d ∈ D, let w∗d(·) := v∗d(·)
1−βd . Substituting, we have for all ω ∈ Ω

w∗d(ω) = rd(ω,σ
∗λ
D (ω)) + βd

]
Ω
w∗d(ω

�)dq(ω�|ω,σ∗λD (ω)). (**)

where σ∗λD (ω) =
Sm
i=0 λ

∗i(ω)σ∗iD(ω) ∈ coNw∗(ω) for all ω.
By classical results on discounted dynamic programming (e.g., Blackwell (1965)),

we conclude from (**) that (i) for all players d ∈ D and all starting states ω ∈ Ω

w∗d(ω) = Ed(σ
∗λ
D )(ω) :=

∞[
n=1

βn−1d rnd (σ
∗λ
D )(ω),

and therefore that (ii) for all players d ∈ D and all starting states ω ∈ Ω

Ed(σ
∗λ
d ,σ

∗λ
−d)(ω) ≥ Ed(πd,σ∗λ−d)(ω) for all πd ∈ Π∞d .
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