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Abstract 11 

Many universities invest substantial resources in the design, deployment, and maintenance of 12 
campus-based cyberinfrastructure. To justify the expense, it is important that university 13 
administrators and others understand and communicate the value of these internal investments in 14 
terms of scholarly impact. This paper introduces two visualizations and their usage in the Value 15 
Analytics (VA) module for Open XD Metrics on Demand (XDMoD), which enable analysis of 16 
external grant funding income, scholarly publications, and collaboration networks. The VA module 17 
was developed by Indiana University’s (IU) Research Technologies division, Pervasive Technology 18 
Institute, and the Cyberinfrastructure for Network Science Center (CNS), in conjunction with the 19 
University at Buffalo’s Center for Computational Research (CCR). It provides diverse visualizations 20 
of measures of information technology (IT) usage, external funding, and publications in support of IT 21 
strategic decision making. This paper details the data, analysis workflows, and visual mappings used 22 
in two VA visualizations that aim to communicate the value of different IT usage in terms of NSF 23 
and NIH funding, resulting publications, and associated research collaborations. To illustrate the 24 
feasibility of measuring IT values on research, we measured its financial and academic impact from 25 
the period between 2012 and 2017 for IU. The financial return on investment (ROI) is measured in 26 
terms of IU funding, totaling $339,013,365 for 885 NIH and NSF projects associated with IT usage, 27 
and the academic ROI constitutes 968 publications associated with 83 of these NSF and NIH awards. 28 
In addition, the results show that Medical Specialties, Brain Research, and Infectious Diseases are 29 
the top three scientific disciplines ranked by the number of publications during the given time period.  30 
 31 

1 Introduction 32 

Access to high-performance computing (HPC) systems and advanced cyberinfrastructure generally is 33 
critical to advance research in many scholarly fields. Over the last thirty years, supercomputing has 34 
expanded from a few monolithic and extremely fast computing systems into a  comprehensive “set of 35 
organizational practices, technical infrastructure and social norms that collectively provide for the 36 
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smooth operation of research and education work at a distance” (Towns et al. 2014). This new form 37 
of cyberinfrastructure (Stewart et al. 2017) is also used by a large number of researchers, scholars, 38 
and artists, and is more complicated, including high performance computing, storage systems, 39 
networks, and visualization systems. This requires a new suite of metrics that can help different 40 
stakeholders better understand the value of research cyberinfrastructure. In addition to job- and 41 
system-performance monitoring, metrics now available and needed to understand system usage and 42 
value include usage modality (e.g., central processing unit [CPU] usage per group or person, number 43 
of users, and wait time). All of these metrics are essential to better understand “why users do what 44 
they do and how they leverage multiple types and instances of cyberinfrastructure (CI) resources” 45 
(Katz et al. 2011). In recent years, there has also been growing interest in measuring the impact of CI 46 
on scientific research and publication outcome (e.g., Knepper and Börner 2016, Fulton et al. 2017, 47 
Madhavan et al. 2014, among others). Such insights are particularly relevant for campus CI that 48 
require significant investment and long-term strategic and financial planning. Visualizations help 49 
communicate the value of CI to diverse stakeholders ranging from domain experts to academic deans 50 
to financial administrators.  51 

Currently, several CI frameworks enable on-demand rendering of impact metrics (e.g., funding, 52 
publications, and citations) that result from using HPC resources. While most monitoring tools for 53 
HPC are traditionally “largely passive and local in nature” (Furlani et al. 2013), these new 54 
frameworks, such as Deep Insight Anytime, Anywhere (DIA2) (Madhavan et al. 2014) and Extreme 55 
Science and Engineering Discovery Environment (XSEDE) Metrics on Demand (XDMoD VA) 56 
(Fulton et al. 2017), are open-source, customizable systems with “increased functionality, an 57 
improved interface, and high-level charting and analytical tools” (Palmer et al. 2015). DIA2 is a web-58 
based visual analytics system aiming to assess research funding portfolios (Madhavan et al. 2014).  59 
Open XDMoD is one of the most widely used software systems in the U.S. and is currently employed 60 
by more than 200 institutions to evaluate their HPC usage (Palmer et al. 2015, Fulton et al. 2017). 61 
The tool has been developed as an open source software for “metrics, basic accounting, and 62 
visualization of CPU (central processing units) and storage usage” at the Center for Computational 63 
Research (CCR) of the University at Buffalo (Palmer et al. 2015).  64 
 65 
Open XDMoD VA adds a value analytics module to Open XDMoD. The two visualizations 66 
presented in this paper contribute to XDMoD VA functionality as follows:  67 

1. Financial and Intellectual Analytics: Analyze grant income and publications by researchers 68 
that use Information Technology (IT) and relate that income to use of local IT systems.  69 

2. Co-PI collaboration networks: Analyze research collaborations by researchers that use local 70 
IT systems. 71 

In this paper, we detail both types of visual analytics for XDMoD VA and demonstrate how they can 72 
help understand the IT impact on academic research. Specifically, we describe the data and visual 73 
analytics workflows used for the Funding and Publication Impact and the Co-PI Collaboration 74 
Network visualizations. The Funding and Publication Impact visualization uses a Sankey graph to 75 
interlink IT usage with funding and publication output. The Co-PI Collaboration Network uses NSF 76 
and NIH funding data to extract and depict Co-PI collaboration networks together with listings of 77 
scholars ranked by the total amount of grants. Both types of visualizations are interactive, supporting 78 
overview first, zoom and panning, and details on demand (Shneiderman 1996). The visualizations are 79 
rendered using the Web Visualization Framework (WVF) developed by CNS at IU that allows for an 80 
effective, highly customizable rendering of interactive visualizations.   81 
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The remainder of the paper is organized as follows: Section 2 discusses prior work on analyzing and 82 
visualizing the impact of IT resources, particularly on scholarly output. In Section 3, we outline the 83 
data we used, as well as the preprocessing methods needed to render that data useful. Section 4 84 
discusses the general methods applied to render data into visual insights. Section 5 details the results 85 
of using the data and methods to render the Funding and Publication Impact and Co-PI 86 
Collaboration Network visualizations. Key insights and planned developments are discussed in 87 
Section 6. 88 
 89 

2 Related Work 90 

In recent years, there has been growing interest in measuring the impact of high-performance 91 
computing (HPC) on scientific research and publication outcome. Advanced cyberinfrastructure 92 
resources require significant investment, particularly when implemented at the campus level, and 93 
insights about the value of such investments in financial and intellectual terms are essential for the 94 
strategic and financial planning of academic institutions (Fulton et al. 2017). A number of studies 95 
have examined the relationship between these values and CI resources usage. Three studies can be 96 
regarded as a starting point for introducing HPC user metrics: namely, Li et al. (2005), Iosup et al. 97 
(2006), and Lee et al. (2006). In addition to traditional metrics (e.g., job size, system utilization), 98 
these studies included user and group characteristics to analyze system performance. Hart (2011) 99 
extended this idea and highlighted the importance of usage and submission patterns to understand 100 
users and their behavior across HPC resources. Knepper (2011) further investigated the relation 101 
between users, their HPC usage behavior, and their field of science. Particularly, his study examined 102 
PIs, their network affiliation, and the scientific field and allocation size of their research projects 103 
from 2003 to 2011 using TeraGrid, a national (US) computing scientific infrastructure. The results 104 
revealed that PIs constituted 23% (3,334) of the total TeraGrid project users (14,474) and that 105 
molecular biosciences and chemistry are the two scientific fields with the highest number of projects 106 
involving TeraGrid usage, 2,292 and 1,828 respectively. Similarly, Furlani et al. (2012, 2013) 107 
observed that molecular biosciences recently joined physics at the top of the list of sciences with the 108 
greatest CPU usage of Extreme Science and Engineering Discovery Environment (XSEDE), a virtual 109 
system providing digital resources and computing services (Towns et al. 2014). In addition, Furlani’s 110 
longitudinal study demonstrated a substantial increase in the number of PIs using XSEDE from ~500 111 
in 2005 to ~1,600 in 2011. The authors noted, however, that often a project PI did not personally 112 
utilize the XSEDE resources, assigning computing tasks to graduate students or postdocs. 113 

Other research focuses on various metrics for measuring academic performance with respect to HPC 114 
usage. Apon et al. (2010) suggest measuring the HPC investment in terms of “competitiveness,” 115 
presented as a ranking system. Ranks are calculated using the Top 500 HPC list that reports on the 116 
fastest 500 computers in the world. An institution’s rank is based on their investments in HPC 117 
according to the Top 500 HPC list. In their study, academic performance was characterized by 118 
publication counts and funding awards. Their funding showed that “consistent investments in HPC at 119 
even modest levels are strongly correlated to research competiveness.” Apon et al.’s study also 120 
presented statistical evidence that NSF research funding and publication counts are good predictors 121 
of academic competitiveness. Subsequently, Knepper and Börner (2016) at the relationship between 122 
the CPU usage of XSEDE resources utilized by PIs and publication records. In addition, they mapped 123 
fields of science into HPC resources, creating a bipartite network. The results demonstrated that 124 
among the 27 top fields, physics, chemistry, astronomy, material research, and meteorology/climate 125 
modeling utilized XSEDE resources the most. They also observed that the type of HPC resources 126 
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plays an important role, as some systems link to almost all fields of science (e.g., NICS Kraken), 127 
whereas others serve only a small number of fields. 128 

Newby et al. (2014) discussed various forms of “return on investment” in studies of research 129 
cyberinfrastructure. Their discussion included a number of different types of value derived from 130 
investment in advanced cyberinfrastructure, including scientific value, workforce development, 131 
economic value, and innovation. More recent work has adopted the financial definition of ROI: “a 132 
ratio that relates income generated … to the resources (or asset base) used to produce that income,” 133 
calculated typically as “income or some other measure of return on investment.” Values greater than 134 
1.0 indicate that return is greater than investment (Kinney and Raiborn 2011).  One of the challenges 135 
in measuring ROI in financial terms is that returns may take decades to materialize in some 136 
disciplines (Stewart et al. 2015). Recently, two studies have applied ROI metrics to study the impact 137 
of HPC usage at Indiana University. Thota et al. (2016) compared the annual cost of operating IU’s 138 
Big Red II supercomputer with the funds brought into the university by the researchers that used Big 139 
Red II. The expected annual average cost for Big Red II is around $15 million dollars. Thota et al. 140 
found that for the year 2013, the total grant income to IU by PIs or Co-PIs who make use of this 141 
supercomputer was more than double the amount of the cost ($39.8 million). This is suggestive 142 
(although not conclusive) of a favorable financial ROI – only suggestive because the analysis of 143 
Thota et al. was not able to take into account how critical use of the Big Red II supercomputer was to 144 
the grants awarded to users of that system. Similarly suggestive, Fulton et al. (2017) showed a 145 
positive correlation between an increase in HPC usage and IU’s award funding over a period of 146 
years. Stewart et al. (2015) analyzed the ROI for XSEDE (the eXtreme Science and Engineering 147 
Discovery Environment) and argued that the ROI of federal investment in this resource was greater 148 
than 1.  149 

3 Data Acquisition and Preparation  150 

Four data sources are used to analyze and visualize the impact of internal IT usage on external 151 
funding, associated publications, and collaboration networks: IT usage data for faculty, staff, and 152 
students working at an institution; IU award database; NIH and NSF award data for the same 153 
institution together with publications that list these awards in the acknowledgements. These datasets, 154 
as well as their matching, cleaning, and preparation for visualization, are detailed subsequently. The 155 
overall process is illustrated in Figure 1. Please note that all public data and all code is available 156 
online at http://cns.iu.edu/2017-Value-Analytics.html. 157 

** Place Figure 1 here 158 

3.1 IT Usage Data 159 

XDMoD HPC resource usage log data is used to extract IT usage information. Among others, the 160 
logs contain five elements: IT system type, IT system name, units used (CPU hours for computing 161 
and Gigabytes for storage), user name, first name, and last name of IT user. An IT system consists of 162 
two types, namely storage and compute node, and several systems within each type.  163 
From January 2012 to October 2017, there were two major storage and six computing systems 164 
utilized by (Co-)PIs for NSF and NIH grants at Indiana University.  165 
Storage: 166 

1. Scholarly Data Archive (SDA),  167 
2. Data Capacitator 2 (DC2)  168 
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Computing:  169 

1. Big Red, a supercomputer, 170 
2. Big Red II, a supercomputer,  171 
3. Karst, a cluster for serial jobs,  172 
4. Mason, designed for data-intensive, high-performance computing tasks (Thota et al. 173 

2016),  174 
5. Quarry, a computing cluster, and 175 
6. Carbonate, designed for data-intensive computing, particularly for genome and 176 

phylogenic software. 177 

Among computing systems, Big Red was decommissioned in 2013 and replaced by Big Red II, 178 
Quarry was decommissioned in January 2015, and Carbonate became available in July 2017 to 179 
replace Mason, scheduled to retire on January 1, 2018. 180 
HPC log files do not differentiate between a group and a single user account. Using unique IT user 181 
names and the fields with last and first names, 1,187 instances of group accounts were identified and 182 
removed. The log files were then filtered by the year > 2012-01-01 with the storage and computer 183 
resources > 0. Tables 1 and 2 provide a summary of IT resource usage at IU from January 2012 to 184 
October 2017 with a total of 65,495,233,153 CPU job hours run, 114,893 GB stored, and 4,112 185 
unique users active. 186 
 187 
 188 

Table 1. Summary of HPC computing jobs at IU by individual users (Jan 2012 - Oct 2017) 189 

Big Red Carbonate Mason Quarry Karst Big Red II 
Total 

CPU-Hours 
Users 

119 134 635 699 1,298 1,311 65,495,233,153 4,197 
 190 

        Table 2. Summary of HPC storage usage at IU by individual users (Jan 2012 - Oct 2017) 191 

DC2 SDA Total Gigabytes Users 

252        1,687    114,893 1,939 

 192 

3.2 Internal IU Award Database 193 

IU internal grant data is generated from Kuali Financial Services. This database imports user ID, the 194 
name of award agency, grant ID, and total amount. For this paper, the following query was specified: 195 
a) the start date is 2012-01-01 and b) the grant amount is greater than zero. Out of the total of 28,965 196 
awards between 2012-01-01 and 2018-01-01, 597 grants are from NSF and 2,677 grants are from 197 
NIH agencies. The number of unique (Co-)PI users are 425 for NSF and 690 for NIH. 198 

3.3 NIH Grant and Publication Data  199 
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NIH grant award numbers and linkages to publications that cite award numbers can be downloaded 200 
in bulk using ExPORTER Data Catalog1 or as a data extract using Research Portfolio Online 201 
Reporting Tools (RePORTER).2 The NIH data provides access to both intramural and extramural 202 
NIH-funded research projects from the past 25 years and publications since 1980 (NIH 2017). For 203 
this study, we have used the RePORTER; however, our methodology is applicable to ExPORTER. 204 
When extracting data from the ExPORTER, NIH files are downloaded separately for each year and 205 
then merged, whereas the RePORTER output is already merged. The RePORTER query form also 206 
allows for generating data by means of query elements, such as keywords, organization names, 207 
publications, and others. By combining these elements, the user is able to create highly customized 208 
searches of this NIH funding database. In order to obtain the grant total and the number of 209 
publications for XDMoD, the following query filters were applied: project year (2012-2017), 210 
organizations listed in the NIH lookup (IU Bloomington, IU South Bend, and IUPUI), state (Indiana), 211 
and publication year (2012-2017), as illustrated in Figure 2. The Agency/Institute/Center field is kept 212 
with its default set to “admin,” and subprojects are set to be excluded. 213 

** Place Figure 2 here 214 

The query was run on August 22, 2017, 9am EST and the query results were exported in CSV format 215 
with relevant fields: namely, Project Number, Contact PI / Project Leader, Other PI or Project 216 
Leader(s), FY Total Cost by IC, and Funding IC. Publication data was exported with the following 217 
fields: Core Project Number, ISSN, Journal, PMID, PUB Year, and Title. The results comprised 933 218 
grants and 9,838 unique publications that acknowledge funding by these grants.  219 

3.4 NSF Grant and Publication 220 

NSF grants and associated publications were downloaded using the NSF Award Search Web API.3 221 
The API supports highly customized queries. For this project, a query was run on October 31, 2017, 222 
2pm EST, using the following filters:  223 

1) awardeeName=“Indiana University”,  224 
2) startDateStart=01/01/2012 and  225 
3) printFields=id,publicationResearch,agency,startDate,expDate,fundProgramName,title,piF226 

irstName,piLastName,estimatedTotalAmt,coPDPI,primaryProgram, 227 
awardeeCity,awardeeName.4  228 

The results comprised 565 unique awards and 245 unique publications. Data was retrieved in JSON 229 
format and converted to a CSV format. 230 

3.5 Data Preparation 231 

NIH Award–Publication Linkage. NIH grants and NIH publications are linked via the project 232 
number. An additional preprocessing step is required for this linkage. The project number from the 233 
grant file is given in a 14-digit format (e.g., 1R01HS022681-01), whereas the publication file is 234 
                                                
1 https://exporter.nih.gov/ExPORTER_Catalog.aspx 
2 https://projectreporter.nih.gov/reporter.cfm 
3 https://www.nsf.gov/developer/ 
4http://api.nsf.gov/services/v1/awards.json?awardeeName=%22Indiana+University%22&offset=26&startDateStart=01/01
/2012&printFields=id,publicationResearch,agency,startDate,expDate,fundProgramName,title,piFirstName,piLastName,es
timatedTotalAmt,coPDPI,primaryProgram, awardeeCity,awardeeName 
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assigned an 11-digit format (e.g., R01HS022681). Combining these two files results in 2,046 unique 235 
publication records linked to 293 grants (11-digit format). Funding and Publication Impact data then 236 
consist of IT resources, funding agencies, publications, journals, and grant total, merged by (Co-)PI 237 
and project number. The Co-PI Collaboration Network includes the names of PIs and Co-PIs, grant 238 
funding total, and the number of grants awarded.  239 

NSF Award–Publication Linkage. For each award, the NSF API data retrieves publications in the 240 
form of a list, which is then split into three fields: authors, publication title, and publication journal. 241 
PIs' first and last name fields were merged, yielding 318 authors, 565 awards, and 245 publications. 242 
Among these awards, 55 awards are associated with publications, and 48 (Co-)PIs are associated with 243 
these 55 awards. 244 
IT User–IU Award Linkage between IT usage data and IU award data was performed using user 245 
IDs.  Next, IU awards were linked to NIH and NSF award-publication linkages via project numbers. 246 
The result is a table that links 61 IT users to the very same number of (Co-)PIs with 83 project 247 
awards, and 968 associated publications based on the unique PMID identifier in the case of NIH 248 
award or the unique publication title for NSF awards, as the NSF API data does not provide 249 
publication-unique identifiers. As a result of this merge, the Funding and Publication Impact data 250 
include IT resources, funding agencies, publications, journals, and grant total, merged by PI and 251 
project number. The total number of awards associated with IT resources is 657 for NIH and 228 for 252 
NSF awards, totaling $339,013,365. It should be noted that our main objective is to measure both 253 
financial and academic impacts. We have excluded the IU awards without publications and the 254 
awards for which the (Co-)PI did not use IT resources. As a result, the number of awards and their 255 
publications is lower than the total number of IU awards, thus totaling $ 21,016,055 for 83 NSF and 256 
NIH awards. 257 
Data Aggregation was performed to determine the number of users per IT resource, the total award 258 
amount per NIH Institute or Center (IC), and the total number of publications per discipline of 259 
science. Table 3 exhibits the total NIH and NSF award amount per IT storage and IT resource for 260 
unique project IDs. NIH ICs identify which Center for Scientific Review (CSR) reviewed the grant 261 
application for a funding decision (NIH Research Portfolio Online Reporting Tools 2017). In 262 
contrast, NSF API does not provide such a field. Table 3 shows the list of NIH IC and NSF together 263 
with the number of awards, publications, and total award amount for the IU dataset. 264 

Table 3. NIH ICs and NSF funding grants with IU (Co-)PIs that use IT resources 265 

Funding 
Agencies 

Number 
of 

funding 
awards 

Number of 
publications 

Sum of FY Total 
Cost by IC in $ 

NIH-NIGMS 14 156 4,057,619 

NIH-NHLBI 6 183 2,655,533 

NIH-NIAMS 6 116 1,992,701 

NIH-NIAAA 9 61 1,523,761 

NIH-NIMH 6 37 1,423,969 

NIH-NCI 7 97 1,338,995 

NIH-NEI 3 33 1,057,979 
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NIH-NIAID 2 10 730,446 

NIH-NIDDK 3 9 674,441 

NIH-OD 2 2 606,848 

NIH-NIA 4 49 587,810 

NIH-NIBIB 1 NA 500,696 

NIH-NLM 3 86 364,995 

NIH-NICHD 1 56 332,956 

NIH-NCCIH 1 18 299,149 
NIH-NIDA 1 5 154,000 
NIH-NHGRI 1 1 5,000 
NIH Total 70 919 18,306,898 
NSF 13 49 2,709,157 
Total 83 968 21,016,055 

 266 

Publication records were aggregated using the UCSD map of science (Börner et al. 2012), a 267 
classification system that assigns each journal to one or more subdisciplines of science that are 268 
further aggregated into 13 disciplines of science (e.g., mathematics or biology).5 It should be noted 269 
that some journal names retrieved from NIH and NSF vary considerably from the UCSD 270 
classification system; several preprocessing steps are necessary, such as lowering cases and 271 
normalizing punctuation. There were 245 cases where publication records did not match the UCSD 272 
map of science dictionary, and 33 publications were associated with more than one discipline with 273 
the same relative association proportion. For these publications, we created two additional categories, 274 
“Unclassified” and “Multidisciplinary.” As a result, each publication is associated with one of the 13 275 
disciplines of science. The number of publications per discipline is given in Table 4. 276 

Table 4. Number of publication per discipline associated with the NIH and NSF awards 277 

Discipline Number of 
Publications 

Medical Specialties   252 
Unclassified                       245 
Brain Research                            107 
Infectious Diseases                       82 
Health Professionals  78 
Biotechnology    59 
Chemistry                          44 
Multidisciplinary 33 
Social Sciences  30 
Biology                                   23 

                                                
5 http://cns.iu.edu/2012-UCSDMap.html 
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Math & Physics  7 
Chemical, Mechanical, & Civil Engineering 5 
Electrical Engineering & Computer Science 2 
Earth Sciences  1 
Total 968 

Finally, all aggregated data and linkage tables were converted to JSON format as required by the 278 
visualization plugin in the XDMoD VA portal. The conversion script is available at 279 
http://cns.iu.edu/2017-Value-Analytics.html. The JSON format specification for the Funding and 280 
Publication Impact and Co-PI Collaboration Network visualizations is illustrated in Figures 3 and 4. 281 

 ** Place Figure 3 here 282 

** Place Figure 4 here 283 

4 Methods 284 

4.1 Collaboration Network Extraction  285 

The Co-PI Collaboration Network was extracted from NIH grant data as described in Section 3. Co-286 
PIs were calculated by first matching the IU grant database’s ‘Agency Award Number’ to the NIH 287 
‘Core Project Number’, and then splitting the NIH ‘Other PI or Project Leader(s)’ field by semicolon 288 
and counting the number of grants and total grants for each co-author pair to compute the weight for 289 
collaboration edges. For NSF, the Co-PI information was extracted from the field ‘coPDPI,’ which 290 
also includes Co-PI’s IDs. These IDs were removed and the field was split by comma. 291 

4.2 Sankey Graphs and Force Network Layout in WVF 292 

Sankey Graphs show the magnitude of flow between nodes in a network as well as the relationship 293 
between flows and their transformation (Riehmann et al. 2017). For the Funding and Publication 294 
Impact graph, we used the D3 Sankey API.6 It reads input nodes and weighted links and computes 295 
positions using the Gauss–Seidel iterative method (Barrett et al. 1994). First, the horizontal position 296 
of the left-most nodes is computed; then, nodes further on right are positioned while minimizing link 297 
distance. After all the nodes are positioned, a reverse pass is made from right-to-left, and overlapping 298 
nodes are moved to minimize collision. The entire process is repeated several times to optimize the 299 
layout. 300 
The final visualization features three types of nodes, namely IT resources on left, funding (e.g., NIH 301 
institutes and NSF) in middle, and publication disciplines on right. The height of a bar, or node, is 302 
proportional to the maximum of the weighted sum of incoming links and the weighted sum of 303 
outgoing links. The nodes are placed in ascending order by their heights.  304 

Force-Directed Graphs are used to display the relationship between objects by calculating the 305 
position of each node based on their shared edges. The D3 force-directed graph7 applies three 306 
primary forces upon the nodes: namely, the sum of all forces, a force between two linked nodes, and 307 
a central force using the layout algorithm by Dwyer et al. (2006). The WVF applies linkStrength as a 308 

                                                
6 https://bost.ocks.org/mike/sankey/ 
7 https://bl.ocks.org/mbostock/4062045 
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parameter to calculate node positions and it is constant for all nodes.8 In the Co-PI Collaboration 309 
Network visualization, the nodes are Co-PIs and edges represent their research collaborations. Node 310 
size corresponds to the number of grants and node color denotes the total funding amount in U.S. 311 
dollars per PI. Edge thickness indicates the number of co-authored grants.  312 
The Web Visualization Framework (WVF) was used to build both visualizations.9 WVF is a highly 313 
configurable packaging of several industry-standard web libraries (Angular, D3, HeadJS, Bootstrap, 314 
and many others) that allows its users to quickly build visualization applications. Existing WVF 315 
visualizations support rendering interactive horizontal bar graphs, geospatial maps, network graphs, 316 
bimodal graphs, science maps, and others. The WVF provides lightweight in-browser aggregation 317 
and analysis, but it relies on web services or external data sources to provide primary analyses. 318 
Applications built using WVF plugins allow each visualization within a page to use data from and 319 
interact with other visualization plugin elements, but through loosely coupled data connections. This 320 
allows for both the visualization elements and the aggregation and filtering methods to be replaced or 321 
removed without affecting other elements.  322 

5 Results 323 

This section explains how the data and methods discussed above are applied to IU institutional data 324 
and what insights were gained. Specifically, we describe the Funding and Publication Impact and 325 
Co-PI Collaboration Network visualizations, as well as the portal that supports easy access to both. 326 
The visualizations aim to help stakeholders understand the financial ROI measured in terms of total 327 
acquired funding and academic ROI measured by publications associated with these awards. 328 

5.1 XDMoD VA Portal  329 

The XDMoD portal is an interactive dashboard with an intuitive graphical interface to XDMoD 330 
metrics such as number of jobs, service units charged, CPUs used, or wait time (Furlani et al. 2012). 331 
XDMoD metrics can be broken down by field of science, institution, job size, principal investigator, 332 
and resource. Academic metrics (e.g., publications, citations, and external funding) can be uploaded 333 
by users or incorporated by institutions via Open XDMoD (Fulton et al. 2017). XDMoD Value 334 
Analytics adds new functionality by offering metrics on financial and scientific impact via 335 
visualization plugins, as illustrated in Figure 5. Key features of the VA interface include the ability to 336 
interact and drill-down, allowing users to access additional related information simply by clicking 337 
inside edges and nodes or selecting the desired filters.   338 

** Place Figure 5 here 339 

5.2 XDMoD Funding and Publication Impact Visualization 340 

The Funding and Publication Impact visualization allows users to interactively explore the relations 341 
between IT resource usage (on left in Figure 6), funding awards aggregated by NIH institute and NSF 342 
(in middle), and publications that cite this funding aggregated by scientific discipline (on right). 343 
Sankey graph links take users on an exploratory quest, moving from the IT resources via funding to 344 
papers published in diverse scientific disciplines.  345 

** Place Figure 6 here 346 

                                                
8 https://github.com/d3/d3-3.x-api-reference/blob/master/Force-Layout.md 
9 https://github.com/cns-iu/WVF 
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In this interactive visualization, users are provided with various functionalities on demand, such as 347 
mouse-over and selection; a legend explaining color and size coding can be viewed on demand. For 348 
example, hovering over a particular node will cause that node and all links emanating from it to be 349 
highlighted, whereas hovering over a particular link will highlight that link with the color of the node 350 
from which the link originated, as illustrated in Figure 6. In this example, the user wishes to explore 351 
the connections between IT resource use, grant funding, and the number of publications in the field 352 
of Brain Research from Scientific Discipline (3). After hovering over one of the links connected to 353 
the Brain Research node from the Scientific Discipline category on the right, the common link will 354 
connect Brain Research publications with the funding agency from the Funding category (2) and IT 355 
Resources (1). Hovering over a link also brings up additional information relevant to the node (e.g., 356 
number of papers, here 54). To explore other links and nodes, the user can simply double-click on 357 
them to reset. The example in Figure 6 also illustrates how the user may gain insights from the visual 358 
data. In particular, the user’s selection reveals that 54 out of 107 papers in Brain Research 359 
acknowledge NIH-NLM funding and that the grants associated with these papers utilized Karst, as a 360 
computing IT resource.  361 

Interpretation: The visualization shows that in 2012-2017, a total of 114,894 GB and 362 
65,495,118,259 CPU hours were used by externally funded projects that had associated publications. 363 
The grant income to IU by PIs and Co-PIs which use IU HPC resources—for researchers who had 364 
both awards and publications during the period analyzed— is $21,016,055. A majority of this 365 
funding comes from NIH projects that total $18,306,898 (87%) with the top three ICs being NIH-366 
NIGMS, NIH-NHLBI, and NIH-NIAMS. In terms of publications, IT resource usage, via grants, 367 
links to 968 publications. Brain Research, Medical Specialties, and Infectious Diseases have the 368 
largest number of publications.   369 

5.3 XDMoD VA Co-PI Network Visualization 370 

The Co-PI Collaboration Network visualization is shown in Figure 7. It features a force-directed 371 
network layout on the left and a sorted horizontal bar graph on the right. Both visualizations are 372 
coupled so that hovering over an investigator in the network highlights that same investigator in the 373 
bar graph. The node size for each investigator indicates the number of grants received, while the node 374 
color indicates the total award amount; see legend in interactive visualization for details. If two 375 
investigators collaborated (i.e., their names are listed together on a grant), there exists an edge 376 
between them. The thickness of this edge represents the number of times they collaborated together. 377 
To see collaborations in the network, simply hover over the node of a particular investigator. This 378 
will highlight the selected investigator node and all emanating edges leading to other collaborator 379 
nodes in that investigator’s network. Similarly, hovering over a bar in the bar graph highlights all 380 
corresponding entries and renders other bars opaque for easy viewing of the selection. The range 381 
filter on the top (1) can be used to increase or decrease the number of node labels in the network 382 
visualization. The plus and minus buttons in the top left can be used to zoom in and out. During 383 
zooming, the legend is automatically updated to ensure that node values and edge thickness remain 384 
accurate.  385 

** Place Figure 7 here 386 

Interpretation: The visualization helps identify three key elements of the academic and financial 387 
impact: namely, the number of awards, their total dollar amount, and research collaborations. 388 
Collaborations are rendered as a network with nodes representing researchers and edges denoting 389 
their Co-PI relationships. Given the rather short time frame, there are many, relatively small 390 
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collaboration clusters. Most links are thin, indicating a one-time collaboration; there are few 391 
instances of multiple collaborations denoted by a thicker edge between nodes. A slider (1) filters 392 
labels by the number of grants. The legend (4) provides additional insights on the number of grants, 393 
their total amount, and the number of co-authored grants. The Total Amount column on the right (2) 394 
shows researchers sorted by total funding during the years 2012-2017. By selecting a (Co-)PI bar (2), 395 
the collaboration network for that (Co-)PI is highlighted (3). 396 

6 Discussion and Outlook 397 

The work presented in this paper aims to help researchers, administrators, and funders understand 398 
and communicate the impact of campus cyberinfrastructure investments on scholarly productivity in 399 
terms of funding intake, publication output, and scholarly networks. The visualizations enable 400 
academic institutions to better understand return on investment (ROI) on advanced 401 
cyberinfrastructure for different types of research (e.g., as expressed by NIH ICs and disciplines of 402 
science). As part of the work, we demonstrated different methods for collecting and processing 403 
publicly available data from NIH and NSF official sites and from institutional production systems 404 
that advance the functionality of the XDMoD VA portal.  405 

Expanding on the work by Knepper and Börner (2016), we primarily focused on the relationship 406 
between storage and computing resources utilized by (Co-)PIs and associated funding and 407 
publication records. Grant income to the university by (Co-)PIs who used IT resources during the 408 
period analyzed was $339,013,365 for 885 NIH and NSF projects and grant income from (Co-)PIs 409 
who used IT resources and had both grant awards and publications was $21,016,055. A total of 968 410 
publications were associated with 83 of these NSF and NIH awards. In addition, the results show that 411 
Brain Research, Medical Specialties, and Infectious Diseases are the top three scientific disciplines 412 
ranked by their publication records during the given time period. Note that only awards associated 413 
with publications and IT resources are displayed; and only funding from two agencies, namely NIH 414 
and NSF, is shown. 415 
In the future, we plan to advance the presented work as follows:  416 

• Institutions will be able to upload not only IT compute cycles and storage usage counts but 417 
also information on storage size and number of compute cycles to provide additional insights 418 
into usage patterns across scientific disciplines. 419 

• Funding data will be automatically retrieved via NIH RePORTER and NSF APIs, reducing 420 
the amount of manual work involved. Both online resources can be queried periodically to 421 
update award and publication data. Data from other funding agencies might be added as well. 422 

• Fuzzy matching algorithms will be implemented to increase the number of journals mapped 423 
to scientific disciplines. This will help reduce the number of publications designated as 424 
Unclassified.  425 

As Fulton et al. (2017) state, “measuring intellectual outcomes is difficult, particularly since the 426 
results of intellectual accomplishments may take years or decades to be fully realized.” To evaluate 427 
data quality and data matching (e.g., by PI name), we are working on a comparison of data retrieved 428 
from NSF/NIH versus data available via IU’s Sponsored Research production databases. Results will 429 
help understand data issues and optimize matching algorithms. Understanding the value of 430 
investment in cyberinfrastructure is challenging, as the impact of such investments has many 431 
dimensions, including intellectual contributions and financial impact. The XDMoD VA modules 432 
facilitate understanding of the role cyberinfrastructure by analyzing a number of metrics and allowing 433 
visualization of the diverse ways in which they impact institutional planning and strategy as well as 434 
the development of human knowledge. 435 
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Figure Captions 551 

Figure 1. Data sources, data linkage, data preparation for XDMoD VA visualizations 552 
Figure 2. NIH RePORTER online search query 553 

Figure 3. JSON data schema for the Funding and Publication Impact visualization plugin 554 

Figure 4. JSON data schema for the Co-PI Collaboration Network visualization plugin 555 

Figure 5. XDMoD VA Portal, see interactive version at http://demo.cns.iu.edu/xdmod-p/portal.html 556 
Figure 6. XDMoD VA Funding and Publication Impact Visualization, see interactive version at 557 
http://demo.cns.iu.edu/xdmod-p/impact.html 558 

Figure 7. XDMoD VA Co-PI Network Visualization, see interactive version at 559 
http://demo.cns.iu.edu/xdmod-p/co-pi.html 560 
 561 


